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INTRODUCTION 
 
VECTOR ALGEBRA 
 
Vector Algebra is a part of algebra that deals with the theory of vectors and vector spaces. 
 
Most of the physical quantities are either scalar or vector quantities. 
 
 

SCALAR QUANTITY: 
 
  Scalar is a number that defines magnitude. Hence a scalar quantity is defined as a 

quantity that has magnitude only. A scalar quantity does not point to any direction i.e. a 

scalar quantity has no directional component. 

For example when we say, the temperature of the room is 30o C, we don‘t specify the direction. 

Hence examples of scalar quantities are mass, temperature, volume, speed etc. 

A scalar quantity is represented simply by a letter – A, B, T, V, S. 

 
VECTOR QUANTITY: 

 

  A Vector has both a magnitude and a direction. Hence a vector quantity is a 

quantity that has both magnitude and direction. 
 
 Examples of vector quantities are force, displacement, velocity, etc. 

 
 
 
 A vector quantity is represented by a letter with an arrow over it or a bold letter.  

 
 

UNIT VECTORS: 

 

When a simple vector is divided by its own magnitude, a new vector is created known as 

the unit vector. A unit vector has a magnitude of one.  Hence the name - unit vector. 

A unit vector is always used to describe the direction of respective vector. 

 

 

 
Hence any vector can be written as the product of its magnitude and its unit vector. Unit Vectors 

along the co-ordinate directions are referred to as the base vectors. For example unit vectors 

along X, Y and Z directions are ax, ay and az respectively. 
 

Position Vector / Radius Vector (𝑂𝑃̅̅ ̅̅   ): 

 

A Position Vector / Radius vector define the position of a point(P)  in space relative to 

the origin(O).Hence Position vector is another way to denote a point in space.  

 

𝑂𝑃̅̅ ̅̅ = 𝑥𝑎̅𝑥 + 𝑦𝑎̅𝑦 + 𝑧𝑎̅𝑧 
3
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Displacement Vector 

Displacement Vector is the displacement or the shortest distance from one point to another.  

Vector Multiplication 

When two vectors are multiplied the result is either a scalar or a vector depending on how 

they are multiplied. The two important types of vector multiplication are: 

 Dot Product/Scalar Product (A.B) 

 Cross product (A x B) 

 

1. DOT PRODUCT (A. B): 

  

Dot product of two vectors A and B is defined as: 

𝐴̅. 𝐵̅ = │𝐴̅││𝐵̅│ cos 𝜃𝐴𝐵 

   

Where 𝜃𝐴𝐵 is the angle formed between A and B.  
Also 𝜃𝐴𝐵 ranges from 0 to π i.e. 0 ≤ 𝜃𝐴𝐵 ≤ π 

The result of A.B is a scalar, hence dot product is also known as Scalar Product. 

 

Properties of Dot Product: 

 

1. If A = (Ax, Ay, Az) and B = (Bx, By, Bz) then  

            

                𝐴̅. 𝐵̅= AxBx + AyBy + AzBz 

 

2. 𝐴̅. 𝐵̅= |A| |B|, if cos𝜃𝐴𝐵=1 which means θAB = 00  
 

This shows that A and B are in the same direction or we can also say that A and B are 

parallel to each other. 
 

3. 𝐴̅. 𝐵̅ = - |A| |B|, if cos 𝜃𝐴𝐵=-1 which means 𝜃𝐴𝐵 = 1800. 
 
This shows that A and B are in the opposite direction or we can also say that A and B are 

antiparallel to each other. 
 

4. 𝐴̅. 𝐵̅ = 0, if cos 𝜃𝐴𝐵=0 which means 𝜃𝐴𝐵 = 900. 5.  
This shows that A and B are orthogonal or perpendicular to each other. 

 

5. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have 
 

         𝑎̅𝑥 . 𝑎̅𝑥 = 𝑎̅𝑦. 𝑎̅𝑦 = 𝑎̅𝑧 . 𝑎̅𝑧 = 1 

 

          𝑎̅𝑥 . 𝑎̅𝑦 = 𝑎̅𝑦. 𝑎̅𝑧 = 𝑎̅𝑧 . 𝑎̅𝑥 = 0
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2. Cross Product (A X B): 

 

Cross Product of two vectors A and B is given as: 

 

𝐴̅𝑋𝐵̅ = │𝐴̅││𝐵̅│ sin 𝜃𝐴𝐵 𝑎̅𝑁 

 

Where 𝜃𝐴𝐵is the angle formed between A and B and 𝑎̅𝑁 is a unit vector normal to both A and B. 

Also θ ranges from 0 to π i.e. 0 ≤ 𝜃𝐴𝐵≤ π 
 

The cross product is an operation between two vectors and the output is also a vector.  

 

Properties of Cross Product: 

 

1.  If A = (Ax, Ay, Az) and B = (Bx, By, Bz) then, 
 
 
 
 
 
 
 
 
 
 

The resultant vector is always normal to both the vector A and B. 
 

 

 2.  𝐴̅𝑋𝐵̅ = 0, if sin 𝜃𝐴𝐵  = 0 which means 𝜃𝐴𝐵 = 00  or 1800;  
This shows that A and B are either parallel or antiparallel to each other. 

 

3. 𝐴̅𝑋𝐵̅ =│𝐴̅││𝐵̅│𝑎̅𝑁, if sin 𝜃𝐴𝐵  = 0 which means 𝜃𝐴𝐵 = 900. 6.  
This shows that A and B are orthogonal or perpendicular to each other. 

 

4. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have  
𝑎̅𝑥𝑋 𝑎̅𝑥 = 𝑎̅𝑦  𝑋 𝑎̅𝑦 = 𝑎̅𝑧𝑋𝑎̅𝑧 = 0 

                                             𝑎̅𝑥𝑋 𝑎̅𝑦 = 𝑎̅𝑧   , 𝑎̅𝑦 𝑋 𝑎̅𝑧 =  𝑎̅𝑥  ,   𝑎̅𝑧𝑋 𝑎̅𝑥 = 𝑎̅𝑦 
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CO-ORDINATE SYSTEMS 
 
 

Co-Ordinate system is a system of representing points in a space of given dimensions by 

coordinates, such as the Cartesian coordinate system or the system of celestial longitude and 

latitude. 
 

In order to describe the spatial variations of the quantities, appropriate coordinate system is 

required. A point or vector can be represented in a curvilinear coordinate system that may be 

orthogonal or non-orthogonal. An orthogonal system is one in which the coordinates are mutually 

perpendicular to each other. 

 

 The different co-ordinate system available are: 
 

 Cartesian or Rectangular co-ordinate system.(Example: Cube, Cuboid) 
 

 Circular Cylindrical co-ordinate system.(Example : Cylinder) 

 

 Spherical co-ordinate system. (Example: Sphere) 

 

The choice depends on the geometry of the application. 
 

A set of 3 scalar values that define position and a set of unit vectors that define direction form 

a co-ordinate system. The 3 scalar values used to define position are called co-ordinates. All 

coordinates are defined with respect to an arbitrary point called the origin. 
 
 

1. Cartesian Co-ordinate System / Rectangular Co-ordinate System (x,y,z)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A Vector in Cartesian system is represented as (Ax, Ay, Az) Or 

𝐴̅ = 𝐴𝑥𝑎̅𝑥 + 𝐴𝑦𝑎̅𝑦 + 𝐴𝑧𝑎̅𝑧 

Where𝑎̅𝑥,𝑎̅𝑦  and 𝑎̅𝑧are the unit vectors in x, y, z direction respectively.

6
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Range of the variables: 

 

It defines the minimum and the maximum value that x, y and z can have in Cartesian system. 

-∞ ≤ x,y,z ≤ ∞ 
 

Differential Displacement / Differential Length (dl): 

 

It is given as  

 

  𝑑𝑙̅ = 𝑑𝑥𝑎̅𝑥 + 𝑑𝑦𝑎̅𝑦 + 𝑑𝑧𝑎̅𝑧 
 

Differential length for a line parallel to x, y and z axis are respectively given as: 

 

dl = 𝑑𝑥𝑎̅𝑥---( For a line parallel to x-axis). 
 
dl = 𝑑𝑦𝑎̅𝑦 ---( For a line Parallel to y-axis). 

dl = 𝑑𝑧𝑎̅𝑧 ---( For a line parallel to z-axis). 
 

If there is a wire of length L in z-axis, then the differential length is given as dl = dz az. Similarly 

if the wire is in y-axis then the differential length is given as dl = dy ay. 
 

Differential Normal Surface (ds): 
 

Differential surface is basically a cross product between two parameters of the surface.  

The differential surface (area element) is defined as  

𝑑𝑠̅̅ ̅ = 𝑑𝑠𝑎̅𝑁 

Where𝑎̅𝑁, is the unit vector perpendicular to the surface. 

 

 

For the 1st figure,  

𝑑𝑠̅̅ ̅ = 𝑑𝑦𝑑𝑧𝑎̅𝑥 
 

2nd figure,  
𝑑𝑠̅̅ ̅ = 𝑑𝑥𝑑𝑧𝑎̅𝑦 

 

3rd figure,  

𝑑𝑠̅̅ ̅ = 𝑑𝑥𝑑𝑦𝑎̅𝑧 
 

Differential Volume: 
 

The differential volume element (dv) can be expressed in terms of the triple product. 

                                                                     𝑑𝑣 = 𝑑𝑥𝑑𝑦𝑑𝑧 

7
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2. Circular Cylindrical Co-ordinate System 
 
 

A Vector in Cylindrical system is represented as (Ar, AǾ,  Az)    or 
 

𝐴̅ = 𝐴𝑟𝑎̅𝑟 + 𝐴∅𝑎̅∅ + 𝐴𝑧𝑎̅𝑧 

 

Where𝑎̅𝑟, 𝑎̅∅ and 𝑎̅𝑧 are the unit vectors in r, Φ  and z directions  respectively. 
 

The physical significance of each parameter of cylindrical coordinates: 
 

1. The value r indicates the distance of the point from the z-axis. It is the radius of the 

cylinder. 

2. The value Φ, also called the azimuthal angle, indicates the rotation angle around the z-

axis. It is basically measured from the x axis in the x-y plane. It is measured anti 

clockwise. 

3. The value z indicates the distance of the point from z-axis. It is the same as in the 

Cartesian system. In short, it is the height of the cylinder. 
 
 8
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Range of the variables: 

 

It defines the minimum and the maximum values of r, Φ and z. 

 

0 ≤ r ≤ ∞  
0 ≤ Φ ≤ 2π 

-∞ ≤ z ≤ ∞  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure shows Point P and Unit vectors in Cylindrical Co-ordinate System. 
 
 

 

Differential Displacement / Differential Length (dl): 

 

It is given as  

 

𝑑𝑙̅ = 𝑑𝑟𝑎̅𝑟 + 𝑟𝑑𝜑𝑎̅𝜑 + 𝑑𝑧𝑎̅𝑧 
 

Differential length for a line parallel to r, Φ  and z axis are respectively given as: 

 

dl = 𝑑𝑟𝑎̅𝑟---( For a line parallel to r-direction). 
 

dl = 𝑟𝑑𝜑𝑎̅𝜑 ---( For a line Parallel to Φ-direction). 

dl = 𝑑𝑧𝑎̅𝑧 ---( For a line parallel to z-axis). 
 
 

Differential Normal Surface (ds): 
 

Differential surface is basically a cross product between two parameters of the surface.  

The differential surface (area element) is defined as  
𝑑𝑠̅̅ ̅ = 𝑑𝑠𝑎̅𝑁 

Where𝑎̅𝑁, is the unit vector perpendicular to the surface. 

 

This surface describes a circular disc. Always remember- To define a circular disk we 

need two parameter one distance measure and one angular measure. An angular parameter 

will always give a curved line or an arc. 
 

In this case dΦ is measured in terms of change in arc. 
 

9
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Arc is given as: 
 
Arc= radius * angle 

𝑑𝑠̅̅ ̅ = 𝑟𝑑𝑟𝑑𝜑𝑎̅𝑧 

𝑑𝑠̅̅ ̅ = 𝑑𝑟𝑑𝑧𝑎̅𝜑 

𝑑𝑠̅̅ ̅ = 𝑟𝑑𝑟𝑑𝜑𝑎̅𝑟 

 

Differential Volume: 
 

The differential volume element (dv) can be expressed in terms of the triple product. 

𝑑𝑣 = 𝑟𝑑𝑟𝑑𝜑𝑑𝑧 
 

3. Spherical coordinate System: 
 

Spherical coordinates consist of one scalar value (r), with units of distance, while the other two 

scalarvalues (θ, Φ) have angular units (degrees or radians). 
 

A Vector in Spherical System is represented as (Ar ,AӨ, AΦ)  or  

𝐴̅ = 𝐴𝑟𝑎̅𝑟 + 𝐴𝜃𝑎̅𝜃 + 𝐴𝜑𝑎̅𝜑 

Where𝑎̅𝑟,𝑎̅𝜃  and 𝑎̅𝜑 are the unit vectors in r, θ and Φ direction respectively. 

 

The physical significance of each parameter of spherical coordinates: 

 

1. The value r expresses the distance of the point from origin (i.e. similar to 

altitude). It is the radius of the sphere. 

2. The angle θ is the angle formed with the z- axis (i.e. similar to latitude). It is also 

called the co-latitude angle. It is measured clockwise. 

3. The angle Φ, also called the azimuthal angle, indicates the rotation angle around the z-

axis (i.e. similar to longitude). It is basically measured from the x axis in the x-y plane. 

It is measured counter-clockwise. 
 

Range of the variables: 

 

It defines the minimum and the maximum value that r, θ and υ can have in spherical co-ordinate 

system. 

 

 0 ≤ r ≤ ∞  
    0 ≤ θ ≤ π 

    0 ≤ Φ≤ 2π 
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Differential length: 

It is given as 

𝑑𝑙̅ = 𝑑𝑟𝑎̅𝑟 + 𝑟𝑑𝜃𝑎̅𝜃 + 𝑟 sin 𝜃 𝑑𝜑𝑎̅𝜑 

 

Differential length for a line parallel to r, θ and Φ axis are respectively given as: 
 

 dl = 𝑑𝑟𝑎̅𝑟--(For a line parallel to r axis) 

 

dl = 𝑟𝑑𝜃𝑎̅𝜃---( For a line parallel to θ direction) 

 

 dl = 𝑟 sin 𝜃 𝑑𝜑𝑎̅𝜑 --(For a line parallel to Φ direction) 

 

 

Differential Normal Surface (ds): 
 

Differential surface is basically a cross product between two parameters of the surface.  

The differential surface (area element) is defined as  
𝑑𝑠̅̅ ̅ = 𝑑𝑠𝑎̅𝑁 

Where𝑎̅𝑁, is the unit vector perpendicular to the surface. 

 

𝑑𝑠̅̅ ̅ = 𝑟𝑑𝑟𝑑𝜃𝑎̅𝜑 

𝑑𝑠̅̅ ̅ = 𝑟2 sin 𝜃 𝑑𝜑𝑑𝜃𝑎̅𝑟 

𝑑𝑠̅̅ ̅ = 𝑟 sin 𝜃 𝑑𝑟𝑑𝜑𝑎̅𝜃 
 

Differential Volume: 
 

The differential volume element (dv) can be expressed in terms of the triple product. 

𝑑𝑣 = 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜑𝑑𝜃 
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Coordinate transformations: 
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DIVERGENCE THEOREM: 

 

It states that the net outward flux of a vector field A through a closed surface S is equal to the 

volume integral of the divergence of the field A inside the surface. 
 
 
 
STOKES THEOREM: 
 

 

It states that the circulation of a vector field A around a closed path L is equal to the 

surface integral of the curl of A over the open surface S bounded by L. 
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Electrostatics:  
 
Electrostatics is a branch of science that involves the study of various phenomena caused by 

electric charges that are slow-moving or even stationary. Electric charge is a fundamental 

property of matter and charge exist in integral multiple of electronic charge.  Electrostatics as the 

study of electric charges at rest. 
 
The two important laws of electrostatics are 
 

 Coulomb‘s Law. 

 Gauss‘s Law. 
 

 

 Both these laws are used to find the electric field due to different charge configurations. 

 

Coulomb‘s law is applicable in finding electric field due to any charge configurations where as 

Gauss‘s law is applicable only when the charge distribution is symmetrical. 
 
Coulomb's Law  

Coulomb's Law states that the force between two point charges Q1and Q2 is directly 

proportional to the product of the charges and inversely proportional to the square of the distance 

between them.  

A point charge is a charge that occupies a region of space which is negligibly small compared to 

the distance between the point charge and any other object. 

Point charge is a hypothetical charge located at a single point in space. It is an idealized model of 

a particle having an electric charge. 

Mathematically,   , where k is the proportionality constant.  

 

In SI units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters. 

Force F is in   Newtons (N)  and  ,   is called the permittivity of free space.  

 

(We are assuming the charges are in free space. If the charges are any other dielectric medium, 

we will use   instead where   is called the relative permittivity or the dielectric 

constant of the medium). 

 

Therefore  ....................... (1) 14
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As shown in the Figure 1 let the position vectors of the point charges Q1and Q2 are given by  

and  . Let  represent the force on Q1 due to charge Q2.     

 

                     

                      Fig 1: Coulomb's Law 

The charges are separated by a distance of . We define the unit vectors as  

and  

can be defined as .  

Similarly the force on Q1 due to charge Q2 can be calculated and if represents this force then 

we can write  

When we have a number of point charges, to determine the force on a particular charge due to all 

other charges, we apply principle of superposition. If we have N number of charges 

Q1,Q2,.........QN located respectively at the points represented by the position vectors , ,......  

, the force experienced by a charge Q located at is given by,  
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Electric Field: 

Electric field due to a charge is the space around the unit charge in which it experiences a force. 

Electric field intensity or the electric field strength at a point is defined as the force per unit 

charge. 
 

Mathematically, 
 

E = F / Q 
 

OR 
 

F = E Q 

The force on charge Q is the product of a charge (which is a scalar) and the value of the 

electric field (which is a vector) at the point where the charge is located. That is  

or,  

The electric field intensity E at a point r (observation point) due a point charge Q located at 

(source point) is given by:  

 

For a collection of N point charges Q1 ,Q2 ,.........QN located at , ,...... , the electric field 

intensity at point is obtained as  

 

The expression (6) can be modified suitably to compute the electric filed due to a continuous 

distribution of charges.  

In figure 2 we consider a continuous volume distribution of charge (t) in the region denoted as 

the source region.  

For an elementary charge , i.e. considering this charge as point charge, we can 

write the field expression as:  
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Fig 2: Continuous Volume Distribution of Charge 

When this expression is integrated over the source region, we get the electric field at the point P 

due to this distribution of charges. Thus the expression for the electric field at P can be written 

as:  

...............volume charge........................... 

Similar technique can be adopted when the charge distribution is in the form of a line charge 

density or a surface charge density.  

.....................line charge ................ 

..................surface charge...................... 

 

Electric Lines of Forces: 
 

Electric line of force is a pictorial representation of the electric field. 
 
Electric line of force (also called Electric Flux lines or Streamlines) is an imaginary straight or 

curved path along which a unit positive charge tends to move in an electric field. 
 

 

Properties Of Electric Lines Of Force: 
 

1. Lines of force start from positive charge and terminate either at negative 

charge or move to infinity. 

2. Similarly lines of force due to a negative charge are assumed to start at 

infinity and terminate at the negative charge. 

17
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3. The number of lines per unit area, through a plane at right angles to the lines, is 

proportional to the magnitude of E. This means that, where the lines of force are close 

together, E is large and where they are far apart E is small. 

 

4. If there is no charge in a volume, then each field line which enters it must also leave it. 

 
5. If there is a positive charge in a volume then more field lines leave it than enter it. 

 
6. If there is a negative charge in a volume then more field lines enter it than leave it. 

 
7. Hence we say Positive charges are sources and Negative charges are sinks of the field. 

 

8. These lines are independent on medium. 

 

9. Lines of force never intersect i.e. they do not cross each other. 

 

10. Tangent to a line of force at any point gives the direction of the electric field E at that 

point. 

 

Electricfluxdensity: 

As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the field at 

a particular point. The electric field depends on the material media in which the field is being 

considered. The flux density vector is defined to be independent of the material media (as we'll 

see that it relates to the charge that is producing it).For a linear isotropic medium under 

consideration; the flux density vector is defined as:   

 

We define the electric flux  as  
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Gauss's Law: 

 Gauss's law is one of the fundamental laws of electromagnetism and it states that the total 

electric flux through a closed surface is equal to the total charge enclosed by the surface.  

          

Fig 3: Gauss's Law 

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric 

constant . The flux density at a distance r on a surface enclosing the charge is given by  

 

If we consider an elementary area ds, the amount of flux passing through the elementary area is 

given by  

 

But , is the elementary solid angle subtended by the area at the location of Q. 

Therefore we can write  

For a closed surface enclosing the charge, we can write  

which can seen to be same as what we have stated in the definition of Gauss's Law.  
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This equation is called the 1st Maxwell's equation of electrostatics. 

 

Application of Gauss's Law: 

Gauss's law is particularly useful in computing or where the charge distribution has some 

symmetry. We shall illustrate the application of Gauss's Law with some examples.  

1.    due to an infinite line charge  

As the first example of illustration of use of Gauss's law, let consider the problem of 

determination of the electric field produced by an infinite line charge of density LC/m. Let us 

consider a line charge positioned along the z-axis as shown in Fig. 4(a) (next slide). Since the 

line charge is assumed to be infinitely long, the electric field will be of the form as shown in Fig. 

4(b) (next slide).  

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can 

write,  

 

Considering the fact that the unit normal vector to areas S1 and S3 are perpendicular to the 

electric field, the surface integrals for the top and bottom surfaces evaluates to zero. Hence we 
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can write,  

 

 

 

Fig 4: Infinite Line Charge 

 

2.  Infinite Sheet of Charge  

As a second example of application of Gauss's theorem, we consider an infinite charged sheet 

covering the x-z plane as shown in figure 5. Assuming a surface charge density of for the 

infinite surface charge, if we consider a cylindrical volume having sides placed symmetrically 

as shown in figure 5, we can write:  
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Fig 5: Infinite Sheet of Charge 

 

It may be noted that the electric field strength is independent of distance. This is true for the 

infinite plane of charge; electric lines of force on either side of the charge will be perpendicular 

to the sheet and extend to infinity as parallel lines. As number of lines of force per unit area gives 

the strength of the field, the field becomes independent of distance. For a finite charge sheet, the 

field will be a function of distance. 

 

3.  Uniformly Charged Sphere  

Let us consider a sphere of radius r0 having a uniform volume charge density of rv C/m3. To 

determine   everywhere, inside and outside the sphere, we construct Gaussian surfaces of 

radius r < r0 and r > r0 as shown in Fig. 6 (a) and Fig. 6(b).  

For the region   ; the total enclosed charge will be  

 

  

 

       Fig 6: Uniformly Charged Sphere 
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By applying Gauss's theorem,  

 

Therefore 

 

For the region ; the total enclosed charge will be  

                                

By applying Gauss's theorem,  

 

 
Electric Potential / Electrostatic Potential (V): 
 

If a charge is placed in the vicinity of another charge (or in the field of another charge), it 

experiences a force. If a field being acted on by a force is moved from one point to another, then 

work is either said to be done on the system or by the system. 

 

Say a point charge Q is moved from point A to point B in an electric field E, then the 

work done in moving the point charge is given as: 
 

WA→B = - ∫AB (F . dl) = - Q ∫AB(E . dl) 

 

where the – ve sign indicates that the work is done on the system by an external agent.  
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The work done per unit charge in moving a test charge from point A to point B is the 

electrostatic potential difference between the two points(VAB). 

 

VAB = WA→B / Q 
 

 - ∫AB(E . dl) 

 
 - ∫InitialFinal (E . dl) 
 

If the potential difference is positive, there is a gain in potential energy in the movement, 

external agent performs the work against the field. If the sign of the potential difference is 

negative, work is done by the field. 

 
The electrostatic field is conservative i.e. the value of the line integral depends only on 

end points and is independent of the path taken. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- Since the electrostatic field is conservative, the electric potential can also be written as: 
 

 

𝑉𝐴𝐵 = − ∫ 𝐸̅

𝐵

𝐴

. 𝑑𝑙̅ 

 

𝑉𝐴𝐵 = − ∫ 𝐸̅

𝑝0

𝐴

. 𝑑𝑙̅ − ∫ 𝐸̅

𝐵

𝑝0

. 𝑑𝑙̅  

𝑉𝐴𝐵 = − ∫ 𝐸̅

𝐵

𝑝0

. 𝑑𝑙̅ +  ∫ 𝐸̅

𝐴

𝑝0

. 𝑑𝑙̅ 

 

𝑉𝐴𝐵 = 𝑉𝐵 − 𝑉𝐴
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Thus the potential difference between two points in an electrostatic field is a scalar field that 

is defined at every point in space and is independent of the path taken. 
 

 

- The work done in moving a point charge from point A to point B can be written as: 
 

WA→B = - Q [VB – VA] =  −𝑄 ∫ 𝐸̅
𝐵

𝐴
. 𝑑𝑙̅ 

 
- Consider a point charge Q at origin O. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

Now if a unit test charge is moved from point A to Point B, then the potential difference between 

them is given as: 
 
 
 
 
 
 
 
 
 
 
 
 

 

- Electrostatic potential or Scalar Electric potential (V) at any point P is given by: 
 

 

𝑉 = − ∫ 𝐸̅
𝑃

𝑃0

. 𝑑𝑙̅
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The reference point Po is where the potential is zero (analogues to ground in a circuit). 

The reference is often taken to be at infinity so that the potential of a point in space is 

defined as 
 

𝑉 = − ∫ 𝐸̅
𝑃

∞

. 𝑑𝑙̅ 

 

Basically potential is considered to be zero at infinity. Thus potential at any point ( rB = r) due 

to a point charge Q can be written as the amount of work done in bringing a unit positive 

charge frominfinity to that point (i.e. rA → ∞) 
 

 

Electric potential (V) at point r due to a point charge Q located at a point with position vector  
r1 is given as: 
 
 
 
 
 
                       
 
Similarly for N point charges Q1, Q2 ….Qn located at points with position vectors r1,  
r2, r3…..rn, theelectric potential (V) at point r is given as: 

 

 

 

 

 

 

The charge element dQ and the total charge due to different charge distribution is given as: 

 

dQ = ρldl → Q = ∫L (ρldl) → (Line Charge) 

 

dQ = ρsds → Q = ∫S (ρsds) → (Surface Charge) 

 

dQ = ρvdv → Q = ∫V (ρvdv) → (Volume Charge)  
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Second Maxwell’s Equation of Electrostatics: 
 

The work done per unit charge in moving a test charge from point A to point B is the 

electrostatic potential difference between the two points(VAB). 
 

VAB = VB – VA 

 

Similarly, 
 

VBA = VA – VB 

 

Hence it‘s clear that potential difference is independent of the path taken. Therefore 
 

VAB  = - VBA 

 

 

VAB+ VBA = 0 
 

 

 ∫AB (E . dl) + [ - ∫BA (E . dl) ] = 0 
 
 
 
 
 
 
 
 
The above equation is called the second Maxwell‘s Equation of Electrostatics in integral form.. 

The above equation shows that the line integral of Electric field intensity (E) along a closed path 

is equal to zero. 

In simple words―No work is done in moving a charge along a closed path in an electrostatic 

field. 
 

Applying Stokes‘ Theorem to the above Equation, we have:  
 
 
 
 
 
 
 
 
 

If the Curl of any vector field is equal to zero, then such a vector field is called an Irrotational or 

Conservative Field. Hence an electrostatic field is also called a conservative field. 
The above equation is called the second Maxwell‘s Equation of Electrostatics in differential 
form. 
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Relationship Between Electric Field Intensity (E) and Electric Potential (V): 
 
 Since Electric potential is a scalar quantity, hence dV (as a function of x, y and z variables) can 

be written as:  
 
 
 
 
 
 
 
 
 
 
 
 

Hence the Electric field intensity (E) is the negative gradient of Electric potential (V). 

The negative sign shows that E is directed from higher to lower values of V i.e. E is opposite   to 

the direction in which V increases. 
 

Energy Density In Electrostatic Field / Work Done To Assemble Charges: 
 
 
In case, if we wish to assemble a number of charges in an empty system, work is required to do 

so. Also electrostatic energy is said to be stored in such a collection. 
 
Let us build up a system in which we position three point charges Q1, Q2 and Q3 at position r1, 

r2 and r3 respectively in an initially empty system. 
 
Consider a point charge Q1 transferred from infinity to position r1 in the system. It takes no 

work to bring the first charge from infinity since there is no electric field to fight against (as the 

system is empty i.e. charge free). 
 

Hence, W1 = 0 J 

 

Now bring in another point charge Q2 from infinity to position r2 in the system. In this case we 

have to do work against the electric field generated by the first charge Q1. 
 

Hence, W2 = Q2 V21 
 

 

where V21 is the electrostatic potential at point r2 due to Q1. 
 

 

- Work done W2 is also given as: 
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Now bring in another point charge Q3 from infinity to position r3 in the system. In this case 

we have to do work against the electric field generated by Q1 and Q2. 

 

Hence, W3 = Q3 V31 + Q3 V32 = Q3 ( V31 + V32 ) 
 

 

where V31 and V32 are electrostatic potential at point r3 due to Q1 and Q2 respectively. 
 

 

The work done is simply the sum of the work done against the electric field generated by 

point charge Q1 and Q2 taken in isolation: 
 
 
 
 
 
 
 
 
 
 

 

- Thus the total work done in assembling the three charges is given as: 
 

 

WE = W1 + W2 + W3 
 

 0 + Q2 V21 + Q3 ( V31 + V32 ) 
 
 

 

 Also total work done ( WE ) is given as:  
 
 
 
 
 
 
 
 
 

If the charges were positioned in reverse order, then the total work done in assembling them 

is given as: 
 

WE = W3 + W2+ W1  

       = 0 + Q2V23 + Q3( V12+ V13)
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Where V23 is the electrostatic potential at point r2 due to Q3 and V12 and V13 are electrostatic 

potential at point r1 due to Q2 and Q3 respectively. 
 

 

- Adding the above two equations we have, 
 

 

2WE = Q1 (V12 + V13) + Q2 (V21 + V23) + Q3 (V31 + V32) 
 

= Q1 V1 + Q2 V2 + Q3 V3 
 
 

 

Hence 
 

WE =1 / 2 [Q1V1 + Q2V2 + Q3V3] 
 
 

 

where V1, V2 and V3 are total potentials at position r1, r2 and r3 respectively. 
 

 

- The result can be generalized for N point charges as:  
 
 
 
 
 
 
 
 

The above equation has three interpretation: This equation represents the potential energy of the 

system.This is the work done in bringing the static charges from infinity and assembling them in 

the required system. This is the kinetic energy which would be released if the system gets 

dissolved i.e. the charges returns back to infinity. 
 
  In place of point charge, if the system has continuous charge distribution ( line, surface or 

volume charge), then the total work done in assembling them is given as: 
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Since ρv = ∇ . D and E = - ∇ V, 
 

Substituting the values in the above equation, work done in assembling a volume charge 

distribution in terms of electric field and flux density is given as: 
 
 
 
 
 
 
 
 

The above equation tells us that the potential energy of a continuous charge distribution 

is stored in an electric field. 
 
 
 The electrostatic energy density wE is defined as:  
 
 
 
 
 
 
 

ELECTROSTATICS-II 

 

Properties of Materials and Steady Electric Current: 
 

Electric field can not only exist in free space and vacuum but also in any material medium. When 

an electric field is applied to the material, the material will modify the electric field either by 

strengthening it or weakening it, depending on what kind of material it is. 
  

Materials are classified into 3 groups based on conductivity / electrical property: 

 

 Conductors (Metals like Copper, Aluminum, etc.) have high conductivity (σ >> 1).  
 Insulators / Dielectric (Vacuum, Glass, Rubber, etc.) have low conductivity (σ << 1). 

 Semiconductors (Silicon, Germanium, etc.) have intermediate conductivity. 
 
Conductivity (σ) is a measure of the ability of the material to conduct electricity. It is 
the reciprocal of resistivity (ρ). Units of conductivity are Siemens/meter and mho. 

 

The basic difference between a conductor and an insulator lies in the amount of free electrons 

available for conduction of current. Conductors have a large amount of free electrons where as 

insulators have only a few number ofelectrons for conduction of current. Most of the conductors 

obey ohm‘s law. Such conductors are also called ohmic conductors. 
 
  Due to the movement of free charges, several types of electric current can be caused. 
 
The different types of electric current are: 
 

 Conduction Current.  
 Convection Current. 

 Displacement Current. 
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Electric current: 

 

Electric current (I) defines the rate at which the net charge passes through a wire of 

cross sectional surface area S. 
 

Mathematically, 

 

If a net charge ΔQ moves across surface S in some small amount of time Δt, electric current(I) 
 
is defined as:  
 
 
 
 
 
 
 

How fast or how speed the charges will move depends on the nature of the material medium. 
 

Current density: 

 

 Current density (J) is defined as current ΔI flowing through surface ΔS. 

 

Imagine surface area ΔS inside a conductor at right angles to the flow of current. As the 

area approaches zero, the current density at a point is defined as:  
 
 
 
 
 
 
 

 

The above equation is applicable only when current density (J) is normal to the surface. 
 

In case if current density(J) is not perpendicular to the surface, consider a small area ds of 

the conductor at an angle θ to the flow of current as shown:  
 
 
 
 
 
 
 
 
 
 

 

In this case current flowing through the area is given as: 

 

dI = J dS cosθ = J . dS       and       𝐼 = ∫ 𝐽̅ 

𝑆
. 𝑑𝑠̅̅ ̅  
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Where angle θ is the angle between the normal to the area and direction of the current. 

 

From the above equation it‘s clear that electric current is a scalar quantity. 
 

 

CONVECTION CURRENT DENSITY: 
 

Convection current occurs in insulators or dielectrics such as liquid, vacuum and rarified gas. 

Convection current results from motion of electrons or ions in an insulating medium. Since 

convection current doesn‘t involve conductors, hence it does not satisfy ohm‘s law. Consider a 

filament where there is a flow of charge ρv at a velocity u = uy ay.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

- Hence the current is given as: 
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Where uy is the velocity of the moving electron or ion and ρv is the free volume charge density. 

 

- Hence the convection current density in general is given as: 
 

J = ρv u 
 

Conduction Current Density: 
 

Conduction current occurs in conductors where there are a large number of free electrons. 

Conduction current occurs due to the drift motion of electrons (charge carriers). Conduction 

current obeys ohm‘s law. 

 When an external electric field is applied to a metallic conductor, conduction current 

occurs due to the drift of electrons. 
 
The charge inside the conductor experiences a force due to the electric field and hence should 

accelerate but due to continuous collision with atomic lattice, their velocity is reduced. The net 

effect is that the electrons moves or drifts with an average velocity called the drift 

velocity (υd) which is proportional to the applied electric field (E). 
 
 

Hence according to Newton‘s law, if an electron with a mass m is moving in an electric 

field E with anaverage drift velocity υd, the the average change in momentum of the free 

electron must be equal to the applied force (F = - e E).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The drift velocity per unit applied electric field is called the mobility of electrons (μe). 

υd = - μe E 

 

where μe is defined as:  
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Consider a conducting wire in which charges subjected to an electric field are moving with 

drift velocity υd. 

Say there are Ne free electrons per cubic meter of conductor, then the free volume  
charge density(ρv)within the wire is 
 

ρv= - e Ne 
 

The charge ΔQ is given as: 
 

ΔQ = ρv ΔV = - e Ne ΔS Δl = - e Ne ΔS υd Δt 

 

- The incremental current is thus given as:  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The conduction current density is thus defined as:  
 
 
 
 
 

 

where σ is the conductivity of the material. 

 

The above equation is known as the Ohm‘s law in point form and is valid at every point 

in space. 
 
In a semiconductor, current flow is due to the movement of both electrons and  
holes, hence conductivity is given as: 
 

σ = ( Ne μe + Nh μh )e 
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DIELECTRC CONSTANT: 
 

It is also known as Relative permittivity. 
 

If two charges q 1 and q 2 are separated from each other by a small distance r. Then by 

using the coulombs law of forces the equation formed will be 
 
 
 
 
 

 

In the above equation  is the electrical permittivity or you can say it, Dielectric constant. 
 

If we repeat the above case with only one change i.e. only change in the separation 

medium between the charges. Here some material medium must be used. Then the 

equation formed will be.  
 
 
 

 

Now after division of above two equations  
 
 
 
 
 

 

In the above figure 
 

 is the Relative Permittivity. Again one thing to notice is that the dielectric constant is 

represented by the symbol (K) but permittivity by the symbol  
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CONTINUITY EQUATION: 
 

The continuity equation is derived from two of Maxwell's equations. It states that the 

divergence of the current density is equal to the negative rate of change of the charge density, 
 
 
 
 

 

Derivation 
 

One of Maxwell's equations, Ampère's law, states that  
 
 
 
 

 

Taking the divergence of both sides results in  
 
 
 
 
 

but the divergence of a curl is zero, so that  
 
 
 
 
 

Another one of Maxwell's equations, Gauss's law, states that  
 
 

 

Substitute this into equation (1) to obtain  
 
 
 
 
 

which is the continuity equation. 
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LAPLACE'S AND POISSON'S EQUATIONS: 
 
 

A useful approach to the calculation of electric potentials is to relate that potential to the 

charge density which gives rise to it. The electric field is related to the charge density by the 

divergence relationship  
 
 
 
 
 
 

 

and the electric field is related to the electric potential by a gradient relationship  
 
 
 
 

Therefore the potential is related to the charge density by Poisson's equation  
 
 
 
 
 
 

In a charge-free region of space, this becomes LaPlace's equation  
 
 
 

 

This mathematical operation, the divergence of the gradient of a function, is called the 

LaPlacian. Expressing the LaPlacian in different coordinate systems to take advantage of the 

symmetry of a charge distribution helps in the solution for the electric potential V. For example, 

if the charge distribution has spherical symmetry, you use the LaPlacian in spherical polar 

coordinates. 
 

Since the potential is a scalar function, this approach has advantages over trying to calculate the 

electric field directly. Once the potential has been calculated, the electric field can be computed 

by taking the gradient of the potential. 
 

40



 
MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY  DEPT. OF ECE 
 

EMTL  
 

Polarization of Dielectric: 
 

If a material contains polar molecules, they will generally be in random orientations when 

no electric field is applied. An applied electric field will polarize the material by orienting 

the dipole moments of polar molecules. 
 
 

 

This decreases the effective electric 

field between the plates and will 

increase the capacitance of the parallel 

plate structure. The dielectric must be 

a good electric insulator so as to 

minimize any DC leakage current 

through a capacitor.  
 
 
 
 
 
 
 
 
 
 

The presence of the dielectric decreases the electric field produced by a given charge density.  
 
 
 
 

 

The factor k by which the effective field is decreased by the polarization of the 

dielectric is called the dielectric constant of the material. 
 
 
 

Capacitance: 
 

The capacitance of a set of charged parallel plates is increased by the insertion of adielectric 

material. The capacitance is inversely proportional to the electric field between the plates, 

and the presence of the dielectric reduces the effective electric field. The dielectric is 

characterized by a dielectric constant k, and the capacitance is multiplied by that factor. 
 

Parallel Plate Capacitor  
 
 

 

 Show  
 
 

The capacitance of flat, parallel metallic plates of area A and separation d is given by 

the expression above where: 
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= permittivity of space and 
 
 

k = relative permittivity of the dielectric material between the plates. 

 

k=1 for free space, k>1 for all media, approximately =1 for air. 

 

The Farad, F, is the SI unit for capacitance and from the definition of capacitance is seen to 

be equal to a Coulomb/Volt. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Series and parallel Connection of capacitors 

Capacitors are connected in various manners in electrical circuits; series and parallel connections 

are the two basic ways of connecting capacitors. We compute the equivalent capacitance for such 

connections. 

Series Case: Series connection of two capacitors is shown in the figure 1. For this case we can 

write, 

.......................(1) 
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Fig 1.: Series Connection of Capacitors 

 

 

  

Fig 2: Parallel Connection of Capacitors 

The same approach may be extended to more than two capacitors connected in series. 

Parallel Case: For the parallel case, the voltages across the capacitors are the same. 

The total charge  

Therefore,                          
 

Capacitance of Parallel Plates:  

 

 The electric field between two large parallel plates 

is    given by 
 
 
 
 
 
 
 
 
 
 
 
 

The voltage difference between the two plates can be expressed in terms of the workdone on 

a positive test charge q when it moves from the positive to the negative plate. 
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It then follows from the definition of capacitance that  
 
 
 
 
 

 

Spherical Capacitor: 

 
The capacitance for spherical or cylindrical conductors can be obtained by evaluating 

the voltage difference between the conductors for a given charge on each. 
 

By applying Gauss' law to an charged conducting sphere, the electric field outside it is found to 

be 
 
 
 
 
 
 
 
 
 
 

The voltage between the spheres can be found by integrating the electric field along a radial line:  
 
 
 
 
 
 

 

From the definition of capacitance, the capacitance is  
 
 
 
 
 
 
 
 
 
 

Isolated Sphere Capacitor: 

An isolated charged conducting sphere has capacitance. Applications for such a capacitor may 

not be immediately evident, but it does illustrate that a charged sphere has stored some energy as 

a result of being charged. Taking the concentric sphere capacitance expression: 
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and taking the limits  gives 
 
 
Further confirmation of this comes from examining the potential of a charged conducting sphere:  
 
 
 
 
 
 
 

Cylindrical Capacitor: 
 

For a cylindrical geometry like a coaxial cable, the capacitance is usually stated as a 

capacitance per unit length. The charge resides on the outer surface of the inner conductor and 

the inner wall of the outer conductor. The capacitance expression is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The capacitance for cylindrical orspherical conductors can be obtained by evaluating the voltage 

difference between the conductors for a given charge on each. By applying Gauss' law to an 

infinite cylinder in a vacuum, the electric field outside a charged cylinder is found to be 
 
 
 
 
 
 

The voltage between the cylinders can be found by integrating the electric field along a 

radial line: 
 
 
 
 
 
 
 

From the definition of capacitance and including the case where the volume is filled 

by a dielectric of dielectric constant k, the capacitance per unit length is defined above. 
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Solved problems: 
 
Problem1: 

 

 
 

Problem-2 

 
 

Problem-3 

 
 

Problem-4 

 
 

 

 

 

46



 
MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY  DEPT. OF ECE 
 

EMTL  
 

Problem-5 

 
 

 

 

Problem-6 

 
 

 

Problem-7 

 
 

Problem-8 
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Problem-9 

 
Problem-10 

 
 

Problem-11 
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Problem-12 

 

 
 

 

 

Problem-13 
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UNIT-II 

MAGNETOSTATICS 

Contents: 

 Biot - Savart's Law  

 Ampere's Circuital Law and Applications 

 Magnetic Flux Density 

 Maxwell’s Equations for Magnetostatic Fields 

 Magnetic Scalar and Vector Potentials 

 Forces due to Magnetic Fields 

 Ampere's Force Law 

 Inductance and Magnetic Energy  

 Illustrative Problem. 

          Maxwell's Equations (Time Varying Fields): 

 Faraday's Law  

 Transformer EMF 

 Displacement Current Density  

 Maxwell's Equations in Different Final Forms 

 Conditions at a Boundary Surface: Dielectric - Dielectric,  

 Illustrative Problems. 
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Introduction: 
 

In previous chapters we have seen that an electrostatic field is produced by static or stationary charges. 

The relationship of the steady magnetic field to its sources is much more complicated. 
 

The source of steady magnetic field may be a permanent magnet, a direct current or an electric 

field changing with time. In this chapter we shall mainly consider the magnetic field produced by 

a direct current. The magnetic field produced due to time varying electric field will be discussed 

later. 

 There are two major laws governing the magneto static fields are: 
 

 Biot-Savart Law 
 

 Ampere's Law 
 

Usually, the magnetic field intensity is represented by the vector . It is customary to represent the 

direction of the magnetic field intensity (or current) by a small circle with a dot or cross sign 

depending on whether the field (or current) is out of or into the page as shown in Fig. 2.1.  
 
 
 
 
 
 
 
 

 

(or l ) out of the page   (or l ) into the page 
 

Fig. Representation of magnetic field (or current) 
 

 

Biot- Savart’s Law: 
 

This law relates the magnetic field intensity dH produced at a point due to a differential 

current element as shown in Fig.  
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The magnetic field intensity at P can be written as, 

 

 
 

 

 
 

where is the distance of the current element from the point P. 

The value of the constant of proportionality 'K' depends upon a property called permeability of 

the medium around the conductor. Permeability is represented by symbol 'm' and the constant 'K' 

is expressed in terms of 'm' as  
 
 
 
 
 
 

 

Magnetic field 'B' is a vector and unless we give the direction of 'dB', its description is not 

complete. Its direction is found to be perpendicular to the plane of 'r' and 'dl'. 

 

If we assign the direction of the current 'I' to the length element 'dl', the vector product dl x r has 

magnitude r dl sinq and direction perpendicular to 'r' and 'dl'. 

 

Hence, Biot–Savart law can be stated in vector form to give both the magnitude as well as 

direction of magnetic field due to a current element as 
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Similar to different charge distributions, we can have different current distribution such as 

line current, surface current and volume current. These different types of current densities are 

shown in Fig. 2.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Line Current Surface Current Volume Current 

 

Fig. 2.3: Different types of current distributions 
 

By denoting the surface current density as K (in amp/m) and volume current density as J 

(in amp/m2) we can write: 
 

 
 

( It may be noted that ) 
 

 

Employing Biot -Savart Law, we can now express the magnetic field intensity H. In terms of 

these current distributions as  

 

 

 

 

............................. for line current............................   
 

 
 

........................ for surface current .................... 
 
 
 

 

....................... for volume current......................  
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𝑯̅ Due to infinitely long straight conductor: 
 

We consider a finite length of a conductor carrying a current placed along z-axis as shown in 

the Fig 2.4. We determine the magnetic field at point P due to this current carrying conductor.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2.4: Field at a point P due to a finite length current carrying conductor 

 

With reference to Fig. 2.4, we find that 
 
 

 

 

Applying Biot - Savart's law for the current element  We can write,  
 
 

    

Substituting we can write,  
 

 

 

We find that, for an infinitely long conductor carrying a current I , and  

Therefore  
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Ampere's Circuital Law: 
 

Ampere's circuital law states that the line integral of the magnetic field (circulation of H ) 

around a closed path is the net current enclosed by this path. Mathematically, 

 

  
 

The total current I enc can be written as, 

 

   
By applying Stoke's theorem, we can write  

 
 
 
 
 
 

 

  
 

Which is the Ampere's circuital law in the point form and Maxwell’s equation for magneto static 

fields. 
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Applications of Ampere's circuital law: 

 
1. It is used to find  𝐻̅ and   𝐵̅ due to any type of current distribution. 

2. If  𝐻̅ or  𝐵̅ is known then it is also used to find current enclosed by any closed path.  

 

We illustrate the application of Ampere's Law with some examples. 

 

𝑯̅ Due to infinitely long straight conductor :( using Ampere's circuital law) 
 

We compute magnetic field due to an infinitely long thin current carrying conductor as 

shown in Fig. 2.5. Using Ampere's Law, we consider the close path to be a circle of 

radius as shown in the Fig. 4.5. 

 

If we consider a small current element , is perpendicular to the plane 

containing both and . Therefore only component of that will be present is  

,i.e., . 
 

By applying Ampere's law we can write, 
 
 
 
 

 

 
              

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. Magnetic field due to an infinite thin current carrying conductor 
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𝑯̅ Due to infinitely long coaxial conductor :( using Ampere's circuital law) 
 

We consider the cross section of an infinitely long coaxial conductor, the inner conductor 

carrying a current I and outer conductor carrying current - I as shown in figure 2.6. We 

compute the magnetic field as a function of as follows: 

 

In the region   
 
 

 

 

  

 

In the region  
 
 

 

  
 
 
 
 
 

 

 
 
 
 

 
Fig. 2.6: Coaxial conductor carrying equal and opposite currents in the region 

 

 
 
 
 
 
 

In the region  
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Magnetic Flux Density:  

In simple matter, the magnetic flux density   related to the magnetic field intensity   as 

 where   called the permeability. In particular when we consider the free space 

where  H/m is the permeability of the free space. Magnetic flux density is 

measured in terms of Wb/m 2 .  

The magnetic flux density through a surface is given by:  

    Wb       

In the case of electrostatic field, we have seen that if the surface is a closed surface, the net flux 

passing through the surface is equal to the charge enclosed by the surface. In case of magnetic 

field isolated magnetic charge (i. e. pole) does not exist. Magnetic poles always occur in pair (as 

N-S). For example, if we desire to have an isolated magnetic pole by dividing the magnetic bar 

successively into two, we end up with pieces each having north (N) and south (S) pole as shown 

in Fig. 6 (a). This process could be continued until the magnets are of atomic dimensions; still 

we will have N-S pair occurring together. This means that the magnetic poles cannot be isolated.    

   

 Fig. 6: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a straight current carrying   

                                                                              conductor                         

Maxwell’s 2nd equation for static magnetic fields: 

Similarly if we consider the field/flux lines of a current carrying conductor as shown in Fig. 6 

(b), we find that these lines are closed lines, that is, if we consider a closed surface, the number 

of flux lines that would leave the surface would be same as the number of flux lines that would 

enter the surface.  

From our discussions above, it is evident that for magnetic field,  59
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 ......................................in integral form 

which is the Gauss's law for the magnetic field.  

By applying divergence theorem, we can write:  

 

   

Hence,                                         ................................... in point/differential form   

which is the Gauss's law for the magnetic field in point form. 

 

Magnetic Scalar and Vector Potentials:  

In studying electric field problems, we introduced the concept of electric potential that simplified 

the computation of electric fields for certain types of problems. In the same manner let us relate 

the magnetic field intensity to a scalar magnetic potential and write:  

 

From Ampere's law , we know that  

 

Therefore,   

But using vector identity, we find that   is valid only where  .  

Thus the scalar magnetic potential is defined only in the region where  . Moreover, Vm in 

general is not a single valued function of position.  This point can be illustrated as follows. Let us 

consider the cross section of a coaxial line as shown in fig 7.  

In the region  ,    and  
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 Fig. 7: Cross Section of a Coaxial Line 

If Vm is the magnetic potential then, 

  

If we set Vm = 0 at  then c=0 and  

                             

We observe that as we make a complete lap around the current carrying conductor , we reach  

again but Vm this time becomes  

 

We observe that value of Vm keeps changing as we complete additional laps to pass through the 

same point. We introduced Vm analogous to electostatic potential V. 

 But for static electric fields,  

 and  

 whereas for steady magnetic field   wherever   but   even if  

along the path of integration. 

We now introduce the vector magnetic potential which can be used in regions where 

current density may be zero or nonzero and the same can be easily extended to time varying 

cases. The use of vector magnetic potential provides elegant ways of solving EM field problems.  

Since and we have the vector identity that for any vector ,   , we 

can write  .  

Here, the vector field   is  called the vector magnetic potential. Its SI unit is Wb/m. 

Thus if can find  of a given current distribution,   can be found from   through a curl 

operation. We have introduced the vector function   and  related its curl to . A vector 

function is defined fully in terms of its curl as well as divergence. The choice of  is made as 

follows. 61
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By using vector identity,  

     

Great deal of simplification can be achieved if we choose .  

Putting  , we get  which is vector poisson equation.  

In Cartesian coordinates, the above equation can be written in terms of the components as  

 . 

 

    

The form of all the above equation is same as that of  

   

for which the solution is 

 

  

In case of time varying fields we shall see that  , which is known as Lorentz condition, V being 

the electric potential. Here we are dealing with static magnetic field, so .  

By comparison, we can write the solution for Ax as  

    

Computing similar solutions for other two components of the vector potential, the vector 

potential can be written as 

 

This equation enables us to find the vector potential at a given point because of a volume current 

density .  

Similarly for line or surface current density we can write                                        
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.   

The magnetic flux  through a given area S is given by         

                                               Substituting         

                                             

Vector potential thus have the physical significance that its integral around any closed path is 

equal to the magnetic flux passing through that path. 
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Forces due to magnetic fields 
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 To further illustrate the concept of inductance, let us consider two closed 

loops C1 and C2 as shown in the figure 8, S1 and S2 are respectively the areas of C1 and C2 . 

  

Fig:8 

If a current I1 flows in C1 , the magnetic flux B1 will be created part of which will be linked to 

C2 as shown in Figure 8: 

  

In a linear medium,   is proportional to I 1. Therefore, we can write 

         67
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where L12 is the mutual inductance. For a more general case, if C2 has N2 turns then 

         

and      

or            

i.e., the mutual inductance can be defined as the ratio of the total flux linkage of the second 

circuit to the current flowing in the first circuit. 

As we have already stated, the magnetic flux produced in C1 gets linked to itself and if C1 has 

N1 turns then , where   is the flux linkage per turn. 

Therefore, self inductance 

  =    

As some of the flux produced by I1 links only to C1 & not C2. 

                        

 

 

Further in general, in a linear medium,  and  

 

Magnetic energy or Energy stored in Magnetic Field: 

So far we have discussed the inductance in static forms. In earlier chapter we discussed 

the fact that work is required to be expended to assemble a group of charges and this work is 

stated as electric energy. In the same manner energy needs to be expended in sending currents 

through coils and it is stored as magnetic energy. Let us consider a scenario where we consider a 

coil in which the current is increased from 0 to a value I. As mentioned earlier, the self 

inductance of a coil in general can be written as 

 

   

or        

If we consider a time varying scenario, 68
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We will later see that  is an induced voltage. 

 is the voltage drop that appears across the coil and thus voltage opposes the 

change of current. 

Therefore in order to maintain the increase of current, the electric source must do an work 

against this induced voltage. 

   .                        

                                 (Joule) 

which is the energy stored in the magnetic circuit. 

We can also express the energy stored in the coil in term of field quantities. 

For linear magnetic circuit    

                                                        

Now,                                                  

where A is the area of cross section of the coil. If l is the length of the coil 

                                               

                                                              

Al is the volume of the coil. Therefore the magnetic energy density i.e., magnetic energy/unit 

volume is given by 

                                                          

In vector form 

  J/mt3  

 

 is the energy density in the magnetic field.                                    
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MAXWELL’S EQUATIONS (Time varying Fields)  

 

Introduction: 

In our study of static fields so far, we have observed that static electric fields are produced by 

electric charges, static magnetic fields are produced by charges in motion or by steady current. 

Further, static electric field is a conservative field and has no curl, the static magnetic field is 

continuous and its divergence is zero. The fundamental relationships for static electric fields 

among the field quantities can be summarized as: 

                           (1) 

                           (2) 

For a linear and isotropic medium, 

                               (3) 

Similarly for the magnetostatic case 

                               (4) 

                           (5) 

                                (6)  

It can be seen that for static case, the electric field vectors and  and magnetic field 

vectors  and  form separate pairs. 

In this chapter we will consider the time varying scenario. In the time varying case we 

will observe that a changing magnetic field will produce a changing electric field and vice versa.  

We begin our discussion with Faraday's Law of electromagnetic induction and then 

present the Maxwell's equations which form the foundation for the electromagnetic theory. 

Maxwell's equations represent one of the most elegant and concise ways to state the 

fundamentals of electricity and magnetism. From them one can develop most of the working 

relationships in the field. Because of their concise statement, they embody a high level of 

mathematical sophistication and are therefore not generally introduced in an introductory 

treatment of the subject, except perhaps as summary relationships. 
 

These basic equations of electricity and magnetism can be used as a starting point for advanced 

courses, but are usually first encountered as unifying equations after the study of electrical and 

magnetic phenomena. 
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Symbols Used 

 

E = Electric field  ρ = charge density  i = electric current 
     

     

B = Magnetic field  ε0 = permittivity  J = current density 
     

     

D = Electric displacement  μ0 = permeability  c = speed of light 
      

H = Magnetic field strength M = Magnetization P = Polarization  
 

 

Integral form in the absence of magnetic or polarizable media:  
 

 

I. Gauss' law for electricity  
 
 
 
 
 

 

 Gauss' law for magnetism 
 
 
 
 
 
 
 
III. Faraday's law of induction  
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IV. Ampere's law 
 
 
 
 

 

 

 
 

 

Differential form in the absence of magnetic or polarizable media:  
 

 

I. Gauss' law for electricity 
 
 
 
 

 

 Gauss' law for magnetism  
 
 
 
 

 

III. Faraday's law of induction  
 
 
 
 
 
 
 
 
 

 

IV. Ampere's law  
 
 
 
 
 
 
 
 
 
 

 

Differential form with magnetic and/or polarizable media: 
 

I. Gauss' law for electricity  
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118 
 
 
 
 

II. Gauss' law for magnetism  
 
 
 
 

 

III. Faraday's law of induction  
 
 
 
 

 

IV. Ampere's law  
 
 
 
 
 
 
 
 
 

 

Faraday's Law: 
 

Michael Faraday, in 1831 discovered experimentally that a current was induced in a conducting 

loop when the magnetic flux linking the loop changed. In terms of fields, we can say that a time 

varying magnetic field produces an electromotive force (emf) which causes a current in a closed 

circuit. The quantitative relation between the induced emf (the voltage that arises from 

conductors moving in a magnetic field or from changing magnetic fields) and the rate of change 

of flux linkage developed based on experimental observation is known as Faraday's law. 
 

Any change in the magnetic environment of a coil of wire will cause a voltage (emf) to be 

"induced" in the coil. No matter how the change is produced, the voltage will be generated. 

The change could be produced by changing the magnetic field strength, moving a magnet 

toward or away from the coil, moving the coil into or out of the magnetic field, rotating the coil 

relative to the magnet, etc. 
 

Faraday's law is a fundamental relationship which comes from Maxwell's equations. It serves as 

a succinct summary of the ways a voltage (or emf) may be generated by a changing magnetic 

environment. The induced emf in a coil is equal to the negative of the rate of change of 

magnetic flux times the number of turns in the coil. It involves the interaction of charge with 

magnetic field. 
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When two current carrying conductors are placed next to each other, we notice that each induces 

a force on the other. Each conductor produces a magnetic field around itself (Biot– Savart law) 

and the second experiences a force that is given by the Lorentz force.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mathematically, the induced emf can be written as    

                      Emf =     Volts                            

where  is the flux linkage over the closed path. 

A non zero   may result due to any of the following:  

(a) time changing flux linkage a stationary closed path. 

(b) relative motion between a steady flux a closed path.  

(c) a combination of the above two cases. 

The negative sign in equation (7) was introduced by Lenz in order to comply with the 

polarity of the induced emf. The negative sign implies that the induced emf will cause a current 

flow in the closed loop in such a direction so as to oppose the change in the linking magnetic 

flux which produces it. (It may be noted that as far as the induced emf is concerned, the closed 

path forming a loop does not necessarily have to be conductive).  

If the closed path is in the form of N tightly wound turns of a coil, the change in the 

magnetic flux linking the coil induces an emf in each turn of the coil and total emf is the sum of 

the induced emfs of the individual turns, i.e.,  

Emf =      Volts                                 

By defining the total flux linkage as  
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The emf can be written as  

Emf =                                   

Continuing with equation (3), over a closed contour 'C' we can write 

Emf =                               

where  is the induced electric field on the conductor to sustain the current. 

Further, total flux enclosed by the contour 'C ' is given by  

                                               

Where S is the surface for which 'C' is the contour.  

From (11) and using (12) in (3) we can write 

                         

By applying stokes theorem 

                         

Therefore, we can write  

                                        

which is the Faraday's law in the point form  

We have said that non zero  can be produced in a several ways. One particular case is when a 

time varying flux linking a stationary closed path induces an emf. The emf induced in a 

stationary closed path by a time varying magnetic field is called a transformer emf . 
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Inconsistency of amperes law 
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Boundary Condition for Magnetic Fields: 

Similar to the boundary conditions in the electro static fields, here we will consider the behavior 

of  and  at the interface of two different media. In particular, we determine how the 

tangential and normal components of magnetic fields behave at the boundary of two regions 

having different permeabilities. 

The figure 4.9 shows the interface between two media having permeabities  and ,  being 

the normal vector from medium 2 to medium 1.             

 

o determine the condition for the normal component of the flux density vector , we consider a 

small pill box P with vanishingly small thickness h and having an elementary area  for the 

faces. Over the pill box, we can write 

 

                                                 ....................................................(4.36) 

Since h --> 0, we can neglect the flux through the sidewall of the pill box.                                  

             

                                                ...........................(4.37)  

 

                                                 and ..................(4.38)  

 

                                                 

where  
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Since is small, we can write  

 

                                 

 

or,                                ...................................(4.40) 

  

That is, the normal component of the magnetic flux density vector is continuous across the 

interface. 

In vector form,  

                                ...........................(4.41)  

 

To determine the condition for the tangential component for the magnetic field, we consider a 

closed path C as shown in figure 4.8. By applying Ampere's law we can write  

 

  if Js = 0, the tangential magnetic field is also continuous. If one of the medium is a perfect 

conductor Js exists on the surface of the perfect conductor.  

 

In vector form we can write, 

 

                            Therefore,     

 

                                                 

 

                 Since h -->0        ,  

 We have shown in figure 4.8, a set of three unit vectors ,  and  such that they 

satisfy                 (R.H. rule). Here  is tangential to the interface and  is the vector 

perpendicular to the surface enclosed by C at the interface. 
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Solved problems: 
Problem1: 
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Problem2: 
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Problem3: 

 
Problem4: 
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Problem5: 
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Problem6: 
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Problem7: 
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Problem8: 
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UNIT – III 
 

EM Wave Characteristics - I:  

 
 Wave Equations for Conducting and Perfect Dielectric Media 

 Uniform Plane Waves - Definition, Relation between E & H 

 Wave Propagation in Lossless and Conducting Media 

 Wave Propagation in Good Conductors and Good Dielectrics 

 Illustrative Problems. 

 

EM Wave Characteristics - II:  

 

 Reflection and Refraction of Plane Waves - Normal for both perfect Conductor and  

                                                                       Perfect dielectric 

                                                                     

 Brewster Angle  

 Critical Angle 

 Total Internal Reflection 

 Surface Impedance 

 Poynting Vector  

 Poynting Theorem  

 Illustrative Problems. 
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Wave equations: 

The Maxwell's equations in the differential form are  

                                                   
Let us consider a source free uniform medium having dielectric constant , magnetic 

permeability  and conductivity . The above set of equations can be written as 

               
Using the vector identity , 

                                   
We can write from 2 

                                

Substituting  from 1 

                                         

But in source free( ) medium (eq3) 

                                         
In the same manner for equation eqn 1 

                                         

Since  from eqn 4, we can write 
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These two equations 

                                          

                                           
are known as wave equations. 

 

Uniform plane waves:  

A uniform plane wave is a particular solution of Maxwell's equation assuming electric 

field (and magnetic field) has same magnitude and phase in infinite planes perpendicular to the 

direction of propagation. It may be noted that in the strict sense a uniform plane wave doesn't 

exist in practice as creation of such waves are possible with sources of infinite extent. However, 

at large distances from the source, the wave front or the surface of the constant phase becomes 

almost spherical and a small portion of this large sphere can be considered to plane. The 

characteristics of plane waves are simple and useful for studying many practical scenarios 

          Let us consider a plane wave which has only Ex component and propagating along z . 

Since the plane wave will have no variation along the plane perpendicular to z 

 i.e., xy plane, . The Helmholtz's equation reduces to, 

 

    The solution to this equation can be written as  

 

     are the amplitude constants (can be determined from boundary conditions). 

   In the time domain,  

 

    assuming are real constants. 

    Here, represents the forward traveling wave. The plot of 

for several values of t is shown in the Figure below 
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Figure : Plane wave traveling in the + z direction  

As can be seen from the figure, at successive times, the wave travels in the +z direction.  

If we fix our attention on a particular point or phase on the wave (as shown by the dot) i.e. , 

= constant     

Then we see that as t is increased to , z also should increase to so that  

 

Or,  

Or,  

    When ,  

    we write = phase velocity . 

 

    If the medium in which the wave is propagating is free space i.e.,  

    Then  

    Where 'C' is the speed of light. That is plane EM wave travels in free space with the speed of 

light. 

    The wavelength is defined as the distance between two successive maxima (or minima or 

any other reference points).  

i.e.,  

or,  

or,  
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   Substituting ,       

or,    

   Thus wavelength also represents the distance covered in one oscillation of the wave. 

Similarly, represents a plane wave traveling in the -z direction.  

    The associated magnetic field can be found as follows:  

    From (6.4),  

 

 

 

=  

                =  

 where is the intrinsic impedance of the medium. 

 

    When the wave travels in free space  

    is the intrinsic impedance of the free space.  

  In the time domain,  

  

Which represents the magnetic field of the wave traveling in the +z direction.  

For the negative traveling wave,  

 

For the plane waves described, both the E & H fields are perpendicular to the direction of 

propagation, and these waves are called TEM (transverse electromagnetic) waves.  

The E & H field components of a TEM wave is shown in Fig below  94
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Figure  : E & H fields of a particular plane wave at time t.  
 

Poynting Vector and Power Flow in Electromagnetic Fields: 

Electromagnetic waves can transport energy from one point to another point. The electric and 

magnetic field intensities asscociated with a travelling electromagnetic wave can be related to the 

rate of such energy transfer.  

Let us consider Maxwell's Curl Equations: 

 

Using vector identity 

 

the above curl equations we can write 

 

.............................................(1) 

In simple medium where and are constant, we can write 

 

   and     

 

Applying Divergence theorem we can write, 95
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...........................(2) 

The term represents the rate of change of energy stored in the electric 

and magnetic fields and the term represents the power dissipation within the volume. 

Hence right hand side of the equation (6.36) represents the total decrease in power within the 

volume under consideration. 

The left hand side of equation (6.36) can be written as where 

(W/mt2) is called the Poynting vector and it represents the power density vector associated with 

the electromagnetic field. The integration of the Poynting vector over any closed surface gives 

the net power flowing out of the surface. Equation (6.36) is referred to as Poynting theorem and 

it states that the net power flowing out of a given volume is equal to the time rate of decrease in 

the energy stored within the volume minus the conduction losses. 

Poynting vector for the time harmonic case: 

For time harmonic case, the time variation is of the form , and we have seen that 

instantaneous value of a quantity is the real part of the product of a phasor quantity and when 

is used as reference. For example, if we consider the phasor 

 

then we can write the instanteneous field as 

.................................(1) 

when E0 is real. 

Let us consider two instanteneous quantities A and B such that 

..................(2) 

 

 where A and B are the phasor quantities. 

i.e,   

 

Therefore, 

 

..............................(3) 
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Since A and B are periodic with period , the time average value of the product form AB, 

denoted by can be written as 

 

.....................................(4) 

Further, considering the phasor quantities A and B, we find that 

 

and , where * denotes complex conjugate.  

 

..............................................(5) 

The poynting vector can be expressed as 

...................................(6) 

If we consider a plane electromagnetic wave propagating in +z direction and has only 

component, from (6.42) we can write: 

 

Using (6)  

 

........................................(7) 

where and , for the plane wave under consideration. 

For a general case, we can write 

.....................(8) 

We can define a complex Poynting vector 

 

and time average of the instantaneous Poynting vector is given by . 
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Polarization of plane wave:  

The polarization of a plane wave can be defined as the orientation of the electric field 

vector as a function of time at a fixed point in space. For an electromagnetic wave, the 

specification of the orientation of the electric field is sufficient as the magnetic field components 

are related to electric field vector by the Maxwell's equations. 

Let us consider a plane wave travelling in the +z direction. The wave has both Ex and Ey 

components. 

 

The corresponding magnetic fields are given by, 

 

 

Depending upon the values of Eox and Eoy we can have several possibilities: 

1. If Eoy = 0, then the wave is linearly polarised in the x-direction. 

2. If Eoy = 0, then the wave is linearly polarised in the y-direction. 

3. If Eox and Eoy are both real (or complex with equal phase), once again we get a linearly 

polarised wave with the axis of polarisation inclined at an angle , with respect to the x-

axis. This is shown in fig1 below 

 

Fig1 : Linear Polarisation  

4. If Eox and Eoy are complex with different phase angles, will not point to a single spatial 

direction. This is explained as follows: 

Let  

 

Then,  
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and ....................................(2) 

To keep the things simple, let us consider a =0 and . Further, let us study the nature of the 

electric field on the z =0 plain. 

From equation (2) we find that, 

 

 

.....................................(3) 

 

and the electric field vector at z = 0 can be written as 

.............................................(4) 

 

Assuming , the plot of for various values of t is hown in figure 2 

 

 

Figure 2 : Plot of E(o,t)  

From equation (6.47) and figure (6.5) we observe that the tip of the arrow representing electric 

field vector traces qn ellipse and the field is said to be elliptically polarised. 
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Figure 3: Polarisation ellipse  

The polarisation ellipse shown in figure 3 is defined by its axial ratio(M/N, the ratio of 

semimajor to semiminor axis), tilt angle (orientation with respect to xaxis) and sense of 

rotation(i.e., CW or CCW). Linear polarisation can be treated as a special case of elliptical 

polarisation, for which the axial ratio is infinite. 

In our example, if , from equation  the tip of the arrow representing electric field 

vector traces out a circle. Such a case is referred to as Circular Polarisation. For circular 

polarisation the axial ratio is unity 

 

Figure 5: Circular Polarisation (RHCP)  

Further, the circular polarisation is aside to be right handed circular polarisation (RHCP) if the 

electric field vector rotates in the direction of the fingers of the right hand when the thumb points 

in the direction of propagation-(same and CCW). If the electric field vector rotates in the 

opposite direction, the polarisation is asid to be left hand circular polarisation (LHCP) (same as 

CW).In AM radio broadcast, the radiated electromagnetic wave is linearly polarised with the 

field vertical to the ground( vertical polarisation) where as TV signals are horizontally polarised 

waves. FM broadcast is usually carried out using circularly polarised waves.In radio 

communication, different information signals can be transmitted at the same frequency at 

orthogonal polarisation ( one signal as vertically polarised other horizontally polarised or one as 

RHCP while the other as LHCP) to increase capacity. Otherwise, same signal can be transmitted 

at orthogonal polarisation to obtain diversity gain to improve reliability of transmission.  
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Behaviour of Plane waves at the inteface of two media: 

 We have considered the propagation of uniform plane waves in an unbounded 

homogeneous medium. In practice, the wave will propagate in bounded regions where several 

values of will be present. When plane wave travelling in one medium meets a different 

medium, it is partly reflected and partly transmitted. In this section, we consider wave reflection 

and transmission at planar boundary between two media. 

 

Fig 6 : Normal Incidence at a plane boundary  

Case1: Let z = 0 plane represent the interface between two media. Medium 1 is characterised by 

and medium 2 is characterized by .Let the subscripts 'i' denotes incident, 

'r' denotes reflected and 't' denotes transmitted field components respectively. 

The incident wave is assumed to be a plane wave polarized along x and travelling in medium 1 

along direction. From equation (6.24) we can write 

..................(1) 

......................(2) 

where and . 

Because of the presence of the second medium at z =0, the incident wave will undergo partial 

reflection and partial transmission.The reflected wave will travel along in medium 1. 

The reflected field components are: 

...............................................(3) 

.........(4) 

The transmitted wave will travel in medium 2 along for which the field components are  
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............................................(5) 

............................................(6) 

 where and  

 

In medium 1, 

and  

and in medium 2, 

and  

Applying boundary conditions at the interface z = 0, i.e., continuity of tangential field 

components and noting that incident, reflected and transmitted field components are tangential at 

the boundary, we can write 

 

&  

From equation 3to 6 we get, 

................................................................(7) 

..............................................................(8) 

Eliminating Eto ,  

 

or,  

or,  

                    ...............(8) 

is called the reflection coefficient. 

From equation (8), we can write 

 
102



 
MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY  DEPT. OF ECE 
 

EMTL  
 

or,  

........................................(9) 

is called the transmission coefficient. 

We observe that, 

........................................(10) 

The following may be noted 

(i) both and T are dimensionless and may be complex 

(ii)  

Let us now consider specific cases: 

Case I: Normal incidence on a plane conducting boundary  

The medium 1 is perfect dielectric and medium 2 is perfectly conducting . 

 

 

 

From (9) and (10) 

= -1 

and T =0 

Hence the wave is not transmitted to medium 2, it gets reflected entirely from the interface to the 

medium 1. 

 

& .................................(11) 

Proceeding in the same manner for the magnetic field in region 1, we can show that, 

...................................................................................(12) 

The wave in medium 1 thus becomes a standing wave due to the super position of a forward 

travelling wave and a backward travelling wave. For a given ' t', both and vary 

sinusoidally with distance measured from z = 0. This is shown in figure 6.9.  
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Figure 7: Generation of standing wave 

Zeroes of E1(z,t) and Maxima of H1(z,t). 

 Maxima of E1(z,t) and zeroes of H1(z,t).  

 

  

Case2: Normal incidence on a plane dielectric boundary   :   If the medium 2 is not a perfect 

conductor (i.e. ) partial reflection will result. There will be a reflected wave in the 

medium 1 and a transmitted wave in the medium 2.Because of the reflected wave, standing wave 

is formed in medium 1.  

From equation (10) and equation (13) we can write  

..................(14) 

Let us consider the scenario when both the media are dissipation less i.e. perfect dielectrics ( 

) 

    ..................(15) 

In this case both and become real numbers.  
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..................(16) 

From (6.61), we can see that, in medium 1 we have a traveling wave component with amplitude 

TEio and a standing wave component with amplitude 2JEio. The location of the maximum and the 

minimum of the electric and magnetic field components in the medium 1from the interface can 

be found as follows. The electric field in medium 1 can be written as  

..................(17) 

If i.e. >0  

The maximum value of the electric field is  

..................(18) 

and this occurs when   

 

or   ,   n = 0, 1, 2, 3.......................(19) 

The minimum value of is  

.................(20) 

And this occurs when  

 

or ,  n = 0, 1, 2, 3.............................(21) 

For  i.e. <0 

The maximum value of is which occurs at the zmin locations and the minimum 

value of is which occurs at zmax locations as given by the equations (6.64) and 

(6.66). 

From our discussions so far we observe that can be written as  

 .................(22) 105
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The quantity S is called as the standing wave ratio.  

As the range of S is given by  

From (6.62), we can write the expression for the magnetic field in medium 1 as  

.................(23) 

From (6.68) we find that will be maximum at locations where is minimum and vice 

versa.  

In medium 2, the transmitted wave propagates in the + z direction.  

Oblique Incidence of EM wave at an interface: So far we have discuss the case of normal 

incidence where electromagnetic wave traveling in a lossless medium impinges normally at the 

interface of a second medium. In this section we shall consider the case of oblique incidence. As 

before, we consider two cases  

i.When the second medium is a perfect conductor.  

ii.When the second medium is a perfect dielectric.  

A plane incidence is defined as the plane containing the vector indicating the direction of 

propagation of the incident wave and normal to the interface. We study two specific cases when 

the incident electric field is perpendicular to the plane of incidence (perpendicular 

polarization) and is parallel to the plane of incidence (parallel polarization). For a general 

case, the incident wave may have arbitrary polarization but the same can be expressed as a linear 

combination of these two individual cases.  
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Critical angle:  
 

In geometric optics, at a refractive boundary, the smallest angle of incidence at which total 

internal reflection occurs. The critical angle is given by 

 

Where Өc is the critical angle, n 1 is the refractive index of the less dense medium, and n 2 is the 

refractive index of the denser medium.  

Angle of incidence: The angle between an incident ray and the normal to a reflecting or 

refracting surface 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 107



 
MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY  DEPT. OF ECE 
 

EMTL  
 

UNIT-IV 
 

TRANSMISSION LINES-I 
 
 

 Types of transmission lines 

 Transmission line Parameters- Primary & Secondary Constants  

 Transmission Line Equations 

 Expressions for Characteristics Impedance 

 Propagation Constant 

 Phase and Group Velocities  

 Infinite Line Concepts 

 Lossless transmission line 

 Distortion  

 Condition for Distortionlessness transmission 

 Minimum Attenuation 

 Illustrative Problems. 
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UNIT – V 

Transmission Lines – II 

 
 SC and OC Lines 

 Input Impedance Relations 

 Reflection Coefficient 

 VSWR 

 λ/4, λ 2, λ /8 Lines - Impedance Transformations 

 Smith Chart - Configuration and Applications,  

 Single Stub Matching 

 Illustrative Problems. 
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Transmission Lines – Smith Chart & 

Impedance Matching 

(Intensive Reading) 
 
1 The Smith Chart 

Transmission line calculations − such as the determination of input impedance using equation 

(4.30) and the reflection coefficient or load impedance from equation (4.32) − often involves 

tedious manipulation of complex numbers.  This tedium can be alleviated using a graphical 

method of solution. The best known and most widely used graphical chart is the Smith chart. 

The Smith chart is a circular plot with a lot of interlaced circles on it. When used correctly, 

impedance matching can be performed without any computation. The only effort required is 

the reading and following of values along the circles. 

 

The Smith chart is a polar plot of the complex reflection coefficient, or equivalently, a 

graphical plot of normalized resistance and reactance functions in the reflection-coefficient 

plane. To understand how the Smith chart for a lossless transmission line is constructed, 

examine the voltage reflection coefficient of the load impedance defined by 

 refl 0
re im

inc 0

L
L

L

V Z Z
j

V Z Z

−
Γ = = = Γ + Γ

+
, (1) 

where reΓ  and imΓ  are the real and imaginary parts of the complex reflection coefficient LΓ . 

The characteristic impedance Z0 is often a constant and a real industry normalized value, such 

as 50 Ω, 75 Ω, 100 Ω, and 600 Ω. We can then define the normalised load impedance by 

 0 0/ ( ) /L Lz Z Z R jX Z r jx= = + = + . (2) 

 

With this simplification, we can rewrite the reflection coefficient formula in (1) as 

 0 0
re im

0 0

( ) / 1

( ) / 1

L L
L

L L

Z Z Z z
j

Z Z Z z

− −
Γ = Γ + Γ = =

+ +
. (3) 

 

The inverse relation of (3) is 

  

 
11

1 1

j
LL

L j
L L

e
z

e

θ

θ

+ Γ+ Γ
= =

− Γ − Γ
 (4) 

or 

 re im

re im

(1 )

(1 )

j
r j x

j

+ Γ + Γ
+ =

− Γ − Γ
. (5) 

Multiplying both the numerator and the denominator of (5) by the complex conjugate of the 

denominator and separating the real and imaginary parts, we obtain 

 
2 2

re im

2 2
re im

1

(1 )
r

− Γ − Γ
=

− Γ + Γ
 (6) 

and 

 
2

im

2 2
re im

2

(1 )
x

Γ
=

− Γ + Γ
. (7) 

 

Equation (6) can be rearranged as 

 

2 2

2
re im

1

1 1

⎛ ⎞ ⎛ ⎞Γ − + Γ =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

r

r r
. (8) 
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This equation is a relationship in the form of a parametric equation 222 )()( Rbyax =−+−  

in the complex plane re im( , )Γ Γ  of a circle centred at the coordinates , 0
1

r

r

⎛ ⎞
⎜ ⎟+⎝ ⎠

 and having a 

radius of 
1

1

+r
. Different values of r yield circles of different radii with centres at different 

positions on the reΓ -axis. The following properties of the r-circles are noted: 

• The centres of all r-circles lie on the reΓ -axis. 

• The circle where there is no resistance (r = 0) is the largest. It is centred at the origin and 

has a radius of 1. 

• The r-circles become progressively smaller as r increases from 0 to ∞, ending at the 

re im( 1, 0)Γ = Γ =  point for an open circuit. 

• All the r-circles pass through the point re im( 1, 0)Γ = Γ = .  

 

See Figure 1 for further details. 

 

1=r

∞=r

0=r (short)

(open)

0 10.5

imΓ

reΓ

 
 

Figure 1: The r-circles in the complex plane re im( , )Γ Γ . 

 

Similarly, (7) can be rearranged as 

 

2 2

2
re im

1 1
( 1)

x x

⎛ ⎞ ⎛ ⎞Γ − + Γ − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (9) 

Again, (9) is a parametric equation of the type 222 )()( Rbyax =−+−  in the complex plane 

),( ir ΓΓ  of a circle centred at the coordinates 
1

1,
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and having a radius of 
1

x
. Different 

values of x yield circles of different radii with centres at different positions on the re 1Γ =  

line. The following properties of the x-circles are noted: 

• The centres of all x-circles lie on the re 1Γ =  line; those for 0x >  (inductive reactance) lie 

above the reΓ -axis, and those for 0x <  lie below the reΓ -axis. 

• The x = 0 circle becomes the reΓ -axis. 

•  The x-circles become progressively smaller as x  increases from 0 to ∞, ending at the 

re im( 1, 0)Γ = Γ =  point for an open circuit. 

• All the x-circles pass through the point re im( 1, 0)Γ = Γ = .  

 

See Figure 2 for further details. 
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reΓ

imΓ

 

Figure 2: The x-circles in the complex plane re im( , )Γ Γ . 

 

To complete the Smith chart, the two circles' families are superimposed. The Smith chart 

therefore becomes a chart of r- and x-circles in the re im( , )Γ Γ -plane for 1Γ ≤ . The 

intersection of an r-circle and an x-circle defines a point which represents a normalized load 

impedance Lz r j x= + . The actual load impedance is 0 0 ( )L LZ Z z Z r j x= = + . As an 

illustration, the impedance 85 30LZ j= +  in a 0 50Z = Ω -system is represented by the point 

P in Figure 3. Here 1.7 0.6Lz j= +  at the intersection of the 1.7r =  and the 0.6x =  circles. 

Values for reΓ  and imΓ  may then be obtained from the projections onto the horizontal and 

vertical axes (see Figure 4). These are approximately given by  re 0.3Γ ≈  and im 0.16Γ ≈ . 

Point scP  at re im( 1, 0)Γ = − Γ =  corresponds to 0r =  and 0x =  and therefore represents a 

short-circuit. ocP  at re im( 1, 0)Γ = Γ =  corresponds to an infinite impedance therefore 

represents an open circuit. 
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reΓ

imΓ

re 1 lineΓ =

 
Figure 3: Smith chart with rectangular coordinates. 

10

Constant

Resistance r

Constant

Reactance x

reΓ

imΓ

 
Figure 4: Direct extraction of the reflection coefficient re imjΓ = Γ + Γ along the horizontal 

and vertical axes. 

 

 

Instead of having a Smith chart marked with reΓ  and imΓ  marked in rectangular coordinates, 

the same chart can be marked in polar coordinates, so that every point in the Γ-plane is 

specified by a magnitude Γ  and a phase angle θ . This is illustrated in Figure 5, where 

several Γ -circles are shown in dashed lines and some θ -angles are marked around the 

1=Γ  circle. The Γ -circles are normally not shown on commercially available Smith charts, 

but once the point representing a certain jxrzL +=  is located, it is simply a matter of 

drawing a circle centred at the origin through the point. The ratio of the distance to the point 

and the radius to the edge of the chart is equal to the magnitude of Γ  of the load reflection 

coefficient, and the angle that a line to that point makes with the real axis represents θ . If, for 
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example the point 6.07.1 jzL +=  is marked on the Smith chart at point P, we find that 

3/1=ΓL  and °=θ 28 . 

 

Each Γ -circle intersects the real axis at two points. In Figure 5 we designate the point on the 

positive real axis as PM  and on the negative real axis as Pm. Since x = 0 along the real axis, 

both these points represent situations of a purely resistive load, LL RZ = . Obviously, 0ZRL >  

at PM where 1>r , and 0ZRL <  at Pm where 1<r . Since 0/ ZRS L=  for 0ZRL > , the value 

of the r-circle passing through the point PM is numerically equal to the standing wave ratio. 

For the example where 6.07.1 jzL += , we find that 2r =  at PM , so that S = r = 2.  

 
 

Figure 5: Smith chart in polar coordinates. 

 

 

Example 1:  

Consider a characteristic impedance of 50 Ω with the following impedances: 

Z1 = 100 + j50 Ω Z2 = 75 − j100 Ω Z3 = j200 Ω Z4 = 150 Ω 

Z5 = ∞ (an open circuit) Z6 = 0 (a short circuit) Z7 = 50 Ω Z8 = 184 − j900 Ω 
 

The normalized impedances shown below are plotted in Figure 6. 

z1 = 2 + j  z2 = 1.5 − j2 z3 = j4 z4 = 3 

z5 = ∞ z6 = 0 z7 = 1 z8 = 3.68 − j18  
 

It is also possible to directly extract the reflection coefficient Γ on the Smith chart of Figure 6. 

Once the impedance point is plotted (the intersection point of a constant resistance circle and 

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE

EMTL

149



 6

of a constant reactance circle), simply read the rectangular coordinates projection on the 

horizontal and vertical axis. This will give reΓ , the real part of the reflection coefficient, and 

imΓ , the imaginary part of the reflection coefficient. Alternatively, the reflection coefficient 

may be obtained in polar form by using the scales provided on the commercial Smith chart. 

 

Γ1 = 0.4 + 0.2 j 

     = 0.45 ∠ 27° 
Γ2 = 0.51 − 0.4 j 

     = 0.65 ∠−38° 
Γ3 = 0.875 + 0.48j 

     = 0.998 ∠29° 
Γ4 = 0.5 

    = 0.5 ∠0° 
Γ5 = 1 

    =  1 ∠0° 
Γ6 = −1 

     = 1 ∠180° 
Γ7 = 0 

    =  0 

Γ8 = 0.96 − 0.1 j 

     = 0.97 ∠−6° 
 

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

 
Figure 6: Points plotted on the Smith chart for Example 1. 

 

The Smith chart is constructed by considering impedance (resistance and reactance). It can be 

used to analyse these parameters in both the series and parallel worlds. Adding elements in a 

series is straightforward. New elements can be added and their effects determined by simply 

moving along the circle to their respective values. However, summing elements in parallel is 

another matter, where admittances should be added. 

 

We know that, by definition, Y = 1/Z and Z = 1/Y. The admittance is expressed in mhos or Ω−1  

or alternatively in Siemens or S. Also, as Z is complex, Y must also be complex. Therefore 

 Y G jB= + , (10) 

where G is called the conductance and B the susceptance of the element. When working with 

admittance, the first thing that we must do is normalize y = Y/Y0. This results in 

1/y g jb z= + = . So, what happens to the reflection coefficient? We note that  
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( 1) / 1 11

1 ( 1) / 1 1

z z y yz

z z z y y

⎛ ⎞− − −−
Γ = = = = −⎜ ⎟+ + + +⎝ ⎠

. (11) 

Thus, for a specific normalized impedance, say 1 1.7 0.6z j= + , we can find the 

corresponding reflection coefficient as 1 0.33 28Γ = ∠ ° . From (11), it then follows that the 

reflection coefficient for a normalized admittance of 2 1.7 0.6y j= +  will be 

2 1 0.33 (28 180 )Γ = −Γ = ∠ ° + ° . 

 

This also implies that for a specific normalized impedance z, we can find 1/y z=  by rotating 

through an angle of 180° around the centre of the Smith chart on a constant radius (see Figure 

7). 

 

 
Figure 7: Results of the 180° rotation 

 

Note that while z and y = 1/z represent the same component, the new point has a different 

position on the Smith chart and a different reflection value. This is due to the fact that the plot 

for z is an impedance plot, but for y it is an admittance plot. When solving problems where 

elements in series and in parallel are mixed together, we can use the same Smith chart by 

simply performing rotations where conversions from z to y or y to z are required. 

 

2 Smith Charts and transmission line circuits 

So far we have based the construction of the Smith chart on the definition of the voltage 

reflection coefficient at the load. The question is: what happens when we connect the load to a 

length of transmission line as in Figure 8. 

 
Figure 8: Finite transmission line terminated with load impedance ZL. 
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On a lossless transmission line with β=k , the input impedance at a distance 'z  from the load 

is given by 

 
2 '

0 2 '

1( ')

( ') 1

j z
L

i j z
L

eV z
Z Z

I z e

− β

− β

+ Γ
= =

− Γ
. (12) 

The normalised impedance is then 

 
2 '

2 '
0

( ') 11

11

j z
i iL

i j z
iL

Z z e
z

Z e

− β

− β

+ Γ+ Γ
= = =

− Γ− Γ
. (13) 

Consequently, the reflection coefficient seen looking into the lossless transmission line of 

length z′  is given by 

 2 2j z j j z
i L Le e e

′ ′− β θ − βΓ = Γ = Γ  (14) 

This implies that as we move along the transmission line towards the generator, the 

magnitude of the reflection coefficient does not change; the angle only changes from a value 

of θ  at the load to a value of ( 2 )z′θ − β  at a distance z′  from the load. On the Smith chart, 

we are therefore rotating on a constant Γ  circle. One full rotation around the Smith chart 

requires that 2 2z′β = π , so that / / 2z′ = π β = λ  where λ  is the wavelength on the 

transmission line.  

 

Two additional scales in /z′Δ λ  are usually provided along the perimeter of the 1=Γ  circle 

for easy reading of the phase change 2 z′βΔ  due to a change in line length z′Δ . The outer 

scale is marked in “wavelengths towards generator” in the clockwise direction (increasing z′ ) 
and “wavelengths towards load” in the counter-clockwise direction (decreasing z′ ). Figure 9 

shows a typical commercially available Smith chart. 

 

Each Γ -circle intersects the real axis at two points. Refer to Figure 5. We designate the point 

on the positive real axis as PM  and on the negative real axis as Pm. Since x = 0 along the real 

axis, both these points represent situations of a purely resistive input impedance, 

0i iZ R j= + . Obviously, 0iR Z>  at PM  where 1r > , and 0iR Z<  at Pm where 1r < . At the 

point PM we find that 0i iZ R S Z= = , while 0 /i iZ R Z S= =  at Pm. The point PM on an 

impedance chart corresponds to the positions of a voltage maximum (and current minimum) 

on the transmission line, while Pm represents a voltage minimum (and current maximum). 

Given an arbitrary normalised impedance z, the value of the r-circle passing through the point 

PM is numerically equal to the standing wave ratio. For the example, if 1.7 0.6z j= + , we find 

that 2r =  at PM , so that S = r = 2 .  
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Figure 9: The Smith chart. 

Example 2: 

Use the Smith chart to find the impedance of a short-circuited section of a lossless 50 Ω co-

axial transmission line that is 100 mm long. The transmission line has a dielectric of relative 

permittivity 9=ε r  between the inner and outer conductor, and the frequency under 

consideration is 100 MHz. 

 

For the transmission line, we find that 2875.600 =εεμω=β r  rad/m and 

19993.0/2 ≈=βπ=λ  m. The transmission line of length 100z ′ =  mm is therefore 

/ 0.1z ′ λ =  wavelengths long.  

• Since 0=Lz , enter the Smith chart at a point Psc. 

• Move along the perimeter of the chart ( 1=Γ ) by 0.1 “wavelengths towards the 

generator” in a clockwise direction to point P1. 

• At P1 , read 0=r  and 725.0≈x , or 725.0jz i = . Then Ω=×= 3.3650725.0 jjZ i . 
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1P

3P

'3P

scP

ocP

2P

'2P

MPO

 
Figure 10: Smith chart calculations for Example 2 and Example 3. 

 

Example 3: A lossless transmission line of length 0.434λ and characteristic impedance 100 Ω 

is terminated in an impedance 260 + j180 Ω. Find the voltage reflection coefficient, the 

standing-wave ratio, the input impedance, and the location of a voltage maximum on the line. 

 

Given 0.434z ′ = λ , Ω=1000Z  and Ω+= 180260 jZ L . Then 

• Enter the Smith chart at 8.16.2/ 0 jZZz LL +==  shown as point P2 in Figure 10. 

• With the centre at the origin, draw a circle of radius 6.02 =Γ= LOP . 

• Draw the straight line 2OP  and extend it to 2P′  on the periphery. Read 0.220 on 

“wavelengths towards generator” scale. The phase angle θ  of the load reflection may 

either be read directly from the Smith chart as 21° on the "Angle of Reflection 

Coefficient" scale. Therefore 21 /180 0.120.6 0.6π πΓ = =j j
L e e .  

• The 6.0=Γ  circle intersects the positive real axis scOP  at 4== Sr . Therefore the 

voltage standing-wave ratio is 4. 

• The find the input impedance, move 2P′  at 0.220 by a total of 0.434 “wavelengths toward 

the generator” first to 0.500 (same as 0.000) and then further to 0.434− 

(0.500−0.220)=0.154 to 3P′ . 
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• Join O and 3P′  by a straight line which intersects the 6.0=Γ  circle at 3P . Here 69.0=r  

and 2.1=x , or 2.169.0 jzi += . Then Ω+=×+= 12069100)2.169.0( jjZ i . 

• In going from 2P  to 3P , the 6.0=Γ  circle intersects the positive real axis at MP  where 

there is a voltage maximum. Thus the voltage maximum appears at 0.250−0.220=0.030 

wavelengths from the load. 

 

3 Transmission line impedance matching. 

Transmission lines are often used for the transmission of power and information. For RF 

power transmission, it is highly desirable that as much power as possible is transmitted from 

the generator to the load and that as little power as possible is lost on the line itself. This will 

require that the load be matched to the characteristic impedance of the line, so that the 

standing wave ratio on the line is as close to unity as possible. For information transmission it 

is essential that the lines be matched, because mismatched loads and junctions will result in 

echoes that distort the information-carrying signal.  

 

Impedance matching by quarter-wave transformer 

For a lossless transmission line of length l, characteristic impedance of 0 0=Z R  and 

terminated in a load impedance LZ , the input impedance is given by 

 

0
0

0

0
0

0

tan

tan

tan(2 / )
.

tan(2 / )

+ β
=

+ β

+ π λ
=

+ π λ

L
i

L

L

L

Z jR l
Z R

R jZ l

Z jR l
R

R jZ l

 (15) 

 

If the transmission line has a length of 4/λ=l , this reduces to 

 

0
0

0

0
0

0

0
0

2
0

tan( / 2)

tan( / 2)

/ tan( / 2)

/ tan( / 2)

0

0

( )
.

+ π
=

+ π

π +
=

π +

+
=

+

=

L
i

L

L

L

L

L

Z jR
Z R

R jZ

Z jR
R

R jZ

jR
R

jZ

R

Z

 (16) 

This presents us with a simple way of matching a resistive load LL RZ =  to a real-valued 

input impedance of  =i iZ R : insert a quarter-wave transformer with characteristic impedance 

0R . From (16), we have 2
0( ) /=i LR R R , or  

 0 = i LR R R . (17) 

Note that the length of the transmission line has to be chosen to be equal to a quarter of a 

transmission line wavelength at the frequency where matching is desired. This matching 

method is therefore frequency sensitive, since the transmission line section will no longer be a 

quarter of a wavelength long at other frequencies. Also note that since the load is usually 

matched to a purely real impedance =i iZ R , this method of impedance matching can only be 

applied to resistive loads LL RZ = , and is not useful for matching complex load impedances 

to a lossless (or low-loss) transmission line. 

 

Example 4 

A signal generator has an internal impedance of 50 Ω. It needs to feed equal power through a 

lossless 50 Ω transmission line with a phase velocity of 0.5c to two separate resistive loads of 
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64 Ω and 25 Ω at a frequency of 10 MHz. Quarter-wave transformers are used to match the 

loads to the 50 Ω line, as shown in Figure 11. 

(a) Determine the required characteristic impedances and physical lengths of the quarter-

wavelength lines. 

(b) Find the standing-wave ratios on the matching line sections. 

 
Figure 11: Impedance matching by quarter-wave transformers (Example 4). 

 

(a) To feed equal power to the two loads, the input resistance at the junction with the main 

line looking toward each load must be  

=1iR Ω=1002 0R  and   =2iR Ω=1002 0R  

Therefore 

01 1 1 80i LR R R′ = = Ω  

 

02 2 2 50i LR R R′ = = Ω  

 

Assume that the matching sections use the same dielectric as the main line. We know that  

2

11

00

c
u

r

p =
εεμ

=
με

= . 

We can therefore deduce that it uses a dielectric with a relative permittivity of 4=ε r . 

=
π

==λ
kf

u p 2
15 m.  

The length of each transmission line section is therefore =l m75.34/ =λ . 

 

(b) Under matched conditions, there are no standing waves on the main transmission line, i.e. 

S = 1.  The standing wave ratios on the two matching line sections are as follows: 

Matching section No. 1: 

  1 01
1

1 01

64 80
0.11

64 80

L
L

L

R R

R R

′− −
Γ = = = −

′+ +
  

  
1

1

1

1 1 0.11
1.25

1 1 0.11

L

L

S
+ Γ +

= = =
− Γ −

  

 

Matching section No. 2: 
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  2 02
2

2 02

25 50
0.33

25 50

L
L

L

R R

R R

′− −
Γ = = = −

′+ +
  

  
2

2

2

1 1 0.33
1.99

1 1 0.33

L

L

S
+ Γ +

= = =
− Γ −

  

Single stub matching 

 

In matching of impedances, we are only allowed to use reactive components (i.e. equivalent 

to inductors and capacitors – no resistors). Recall that for short-circuited and open-circuited 

lossless transmission line sections of length l, the input impedance was given by 

 

 , 0 0tan tan(2 / )i sZ jZ l jZ l= β = π λ , (18) 

and 

 , 0 0cot cot(2 / )i oZ jZ l jZ l= − β = − π λ , (19) 

 

where 00 RZ =  is purely real. The impedances in (18) and (19) are purely reactive 

(imaginary), and therefore these transmission line sections act as inductors or capacitors, 

depending on the line length. We are going to make use of these elements (called transmission 

line stubs) to design matching circuits. In practice, it is more convenient to use short-circuited 

stubs. Short-circuited stubs are usually used in preference to open-circuited stubs because an 

infinite terminating impedance is more difficult to realise than a zero terminating impedance. 

Radiation from the open end of a stub makes it appear longer than it is, and compensation for 

these effects makes the use of open-circuited stubs more cumbersome. A short-circuited stub 

of an adjustable length is much easier to construct than an open-circuited stub. 

 

It is also more common to connect these stubs in parallel with the main line. For parallel 

connections, it is convenient to use admittances rather than impedances. In thee cases, we use 

the Smith chart as an admittance chart to design the matching networks. 

 

A single-stub matching circuit is depicted in Figure 12. Note that the short-circuited stub is 

connected in parallel with the main line. In order to match the complex load impedance LZ  to 

the characteristic impedance of the lossless main line, 00 RZ = , we need to determine the 

lengths d and l.  
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Figure 12: Impedance matching by single stub method. 

For the transmission line to be matched at the point B B′− , the basic requirement is 

 
0

0

1
.

i B sY Y Y

Y
R

= +

= =
 (20) 

In terms of normalised admittances, (23) becomes 

 1i B sy y y= + = . (21) 

where 0/ YYjbgy BBBB =+=  for the load section and 0/ YYy ss =  for the short-circuited 

stub. Note that )/2cot( λπ−= ljys  is purely imaginary. It can therefore only contribute to 

the imaginary part of iy . The position of B B′−  (or, in other words, the length d) must be 

chosen such that 1Bg = , i.e. 

 1B By jb= + . (22) 

Next, the length l is chosen such that 

 s By jb= − , (23) 

which yields 1)()1( =−++=+= BBsBi jbjbyyy . The circuit is therefore matched at 

B B′− , and at any point left of B B′−  as well. 

 

If we use the Smith chart, we would rotate on a Γ -circle in a clockwise direction (towards 

the generator) when transforming the normalised load admittance to the admittance By . 

However, according to (23), By  must also be located on the 1=g  circle. 

 

The use of the Smith chart for the purpose of designing a single-stub matching network is best 

illustrated by means of an example. 

 

Example 5: A 50 Ω transmission line is connected to a load impedance Ω−= 5.3735 jZ L . 

Find the position and length of a short-circuited stub required to match the load at a frequency 
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of 200 MHz. Assume that the transmission line is a co-axial line with a dielectric for which 

9=ε r . 

 

Given Ω== 5000 RZ  and 47 535 .LZ j= − Ω . Therefore 0/ 0.7 0.95= = −L Lz Z Z j . 

• Enter the Smith chart at Lz  shown as point 1P  in Figure 13. 

• Draw a Γ -circle centred at O with radius 1OP . 

• Draw a straight line from 1P  through O to point 2P′  on the perimeter, intersecting the Γ -

circle at 2P , which represents Ly . Note 0.109 at 2P′  on the “wavelengths toward 

generator” scale. 

• Note the two points of intersection of the Γ -circle with the 1=g  circle: 

o At 3P :  11 12.11 BB jbjy +=+=  

o At 4P : 22 12.11 BB jbjy +=−=  

• Solutions for the position of the stub: 

o For 3P  (from 2P′  to 3P′ ) λ=λ−= 059.0)109.0168.0(1d  

o For 4P  (from 2P′  to 4P′ ) λ=λ−= 223.0)109.0332.0(2d  

• Solutions for the length of the short-circuited stub to provide Bs jby −= : 

o For 3P  (from scP  on the extreme right of the admittance chart to 3P′′ , which 

represents 2.11 jjby Bs −=−= ): λ=λ−= 111.0)250.0361.0(1l  

o For 4P  (from scP  on the extreme right of the admittance chart to 4P′′ , which 

represents 2.12 jjby Bs =−= ): λ=λ+= 389.0)250.0139.0(2l  

 

To compute the physical lengths of the transmission line sections, we need to calculate the 

wavelength on the transmission line. Therefore 

 m5.0
//1

≈
ε

=
με

==λ
f

c

ff

u
rp

.   

Thus: 

 

mm5.29059.01 =λ=d  mm5.55111.01 =λ=l  

mm5.111223.02 =λ=d  mm5.194389.02 =λ=l  

 

Note that either of these two sets of solutions would match the load. In fact, there is a whole 

range of possible solutions. For example, when calculating 1d , instead of going straight from 

2P′  to 3P′ , we could have started at 2P′ , rotated clockwise around the Smith chart n times 

(representing an additional length of 2/λn ) and continued on to 3P′ , yielding 

..,2,1,0,2/059.01 =λ+λ= nnd . The same argument applies for 2d , 1l  and 2l .  
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1P 4P

'4P
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1=g

 
Figure 13: Single-stub matching on an admittance chart (Example 5). 
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