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UNIT - I- Electrostatics
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INTRODUCTION
VECTOR ALGEBRA
Vector Algebra is a part of algebra that deals with the theory of vectors and vector spaces.

Most of the physical quantities are either scalar or vector quantities.

SCALAR QUANTITY:

Scalar is a number that defines magnitude. Hence a scalar quantity is defined as a
quantity that has magnitude only. A scalar quantity does not point to any direction i.e. a
scalar quantity has no directional component.

For example when we say, the temperature of the room is 300 C, we don‘t specify the direction.
Hence examples of scalar quantities are mass, temperature, volume, speed etc.
A scalar quantity is represented simply by a letter — A, B, T, V, S.

VECTOR QUANTITY:

A Vector has both a magnitude and a direction. Hence a vector quantity is a
quantity that has both magnitude and direction.

Examples of vector quantities are force, displacement, velocity, etc.

i e T
A,V,B,F

A vector quantity is represented by a letter with an arrow over it or a bold letter.

UNIT VECTORS:

When a simple vector is divided by its own magnitude, a new vector is created known as
the unit vector. A unit vector has a magnitude of one. Hence the name - unit vector.

A unit vector is always used to describe the direction of respective vector.
pa—-
‘. ‘A s
‘]..'5* = Ry == ‘A = |:&
|Al

‘«]A

Hence any vector can be written as the product of its magnitude and its unit vector. Unit Vectors
along the co-ordinate directions are referred to as the base vectors. For example unit vectors
along X, Y and Z directions are ax, ay and az respectively.

Position Vector / Radius Vector (OP ):

A Position Vector / Radius vector define the position of a point(P) in space relative to
the origin(O).Hence Position vector is another way to denote a point in space.

OP = xa, + ya, + za,
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Displacement Vector
Displacement Vector is the displacement or the shortest distance from one point to another.
Vector Multiplication

When two vectors are multiplied the result is either a scalar or a vector depending on how
they are multiplied. The two important types of vector multiplication are:

e Dot Product/Scalar Product (A.B)
e Cross product (A x B)

1. DOT PRODUCT (A. B):

Dot product of two vectors A and B is defined as:
AB=|A4||B| cos8,s

Where 6,5 is the angle formed between A and B.
Also 6,5 ranges fromOtomie. 0<6,5 <m
The result of A.B is a scalar, hence dot product is also known as Scalar Product.

Properties of Dot Product:

1. If A= (Ax, Ay, Az) and B = (Bx, By, Bz) then
A. B= AxBx + AyBy + AzBz

2. A.B=|A| |B|, if cosf,5=1 which means 0ag = 0°

This shows that A and B are in the same direction or we can also say that A and B are
parallel to each other.

3. A.B =-|A||B|, if cos 8,5=-1 which means 8,5 = 180°.
This shows that A and B are in the opposite direction or we can also say that A and B are
antiparallel to each other.

4. A.B =0, if cos 8,5=0 which means 6, = 90°.
This shows that A and B are orthogonal or perpendicular to each other.

5. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have
Q. 0y = Qy. Ay = Ay.0; = 1

Ay.Qy = Ay. A, = Az 0y =0
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2. Cross Product (A X B):
Cross Product of two vectors A and B is given as:
Iq_XE = |14_| |§| Sil’l@ABaN

Where 6,is the angle formed between A and B and ay is a unit vector normal to both A and B.
Also 0 ranges from Oto wie. 0<60,5<m

The cross product is an operation between two vectors and the output is also a vector.

Properties of Cross Product:

1. If A = (Ax, Ay, Az) and B = (Bx, By, Bz) then,

A*B = |Ay Ay A,

The resultant vector is always normal to both the vector A and B.

2. AXB =0, if sin 8,5 = 0 which means 6,5 = 0° or 180°;
This shows that A and B are either parallel or antiparallel to each other.

3. AXB =|A| | B|ay, if sin6,; = 0 which means 6, = 90°.
This shows that A and B are orthogonal or perpendicular to each other.

4. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have
a,X a4y =a, X a, =a,Xa, =0
QX ay=0a, 8y X a, = Gy, a,X ay = a,
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CO-ORDINATE SYSTEMS

Co-Ordinate system is a system of representing points in a space of given dimensions by
coordinates, such as the Cartesian coordinate system or the system of celestial longitude and
latitude.

In order to describe the spatial variations of the quantities, appropriate coordinate system is
required. A point or vector can be represented in a curvilinear coordinate system that may be
orthogonal or non-orthogonal. An orthogonal system is one in which the coordinates are mutually
perpendicular to each other.

The different co-ordinate system available are:
e Cartesian or Rectangular co-ordinate system.(Example: Cube, Cuboid)

e Circular Cylindrical co-ordinate system.(Example : Cylinder)
e Spherical co-ordinate system. (Example: Sphere)

The choice depends on the geometry of the application.

A set of 3 scalar values that define position and a set of unit vectors that define direction form
a co-ordinate system. The 3 scalar values used to define position are called co-ordinates. All
coordinates are defined with respect to an arbitrary point called the origin.

1. Cartesian Co-ordinate System / Rectangular Co-ordinate System (x,y,z)

A Vector in Cartesian system is reprgsented as (Ax, Ay, Az) Or
A=Aa, +Aya, +A,a,
Wherea,,a, and a,are the unit vectors in X, y, z direction respectively.
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Range of the variables:

It defines the minimum and the maximum value that x, y and z can have in Cartesian system.
-00 < X,y,Z < 0

Differential Displacement / Differential Length (dl):
It is given as
dl = dxa, + dya, + dza,
Differential length for a line parallel to x, y and z axis are respectively given as:

dl = dxa,---( For a line parallel to x-axis).
dl = dya, ---( For a line Parallel to y-axis).
dl = dza, ---( For a line parallel to z-axis).

If there is a wire of length L in z-axis, then the differential length is given as dl = dz az. Similarly
if the wire is in y-axis then the differential length is given as dl = dy ay.

Differential Normal Surface (ds):

Differential surface is basically a cross product between two parameters of the surface.
The differential surface (area element) is defined as

ds = dsay
Wherea,, is the unit vector perpendicular to the surface.

For the 1st figure, z
ds = dydza, az

2nd figure, L_ldz LJ&“ dx}

e _ s - £
a ds = ﬁadzay &

3rd figure, x*
ds = dxdya,

Differential VVolume:

The differential volume element (dv) can be expressed in terms of the triple product.
dv = dxdydz
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dv = dx dv d

Differential length, area, and volume in
Cartesian coordinates.

2. Circular Cylindrical Co-ordinate System

A Vector in Cylindrical system is represented as (Ar, Ag, A;) or
A= A.a, + Agag + A,a,
Wherea,., a, and a, are the unit vectors inr, ® and z directions respectively.

The physical significance of each parameter of cylindrical coordinates:

1. The value r indicates the distance of the point from the z-axis. It is the radius of the
cylinder.

2. The value @, also called the azimuthal angle, indicates the rotation angle around the z-
axis. It is basically measured from the x axis in the x-y plane. It is measured anti
clockwise.

3. The value z indicates the distance of the point from z-axis. It is the same as in the
Cartesian system. In short, it is the height of the cylinder.
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Range of the variables:

It defines the minimum and the maximum values of r, @ and z.

0<r<w
0<d<2n
-0 <7<
)
L]
AN s )
\\5—»-—'—-"/
ﬂp
| v
)
P -

Ve — AL

X

Figure shows Point P and Unit vectors in Cylindrical Co-ordinate System.

Differential Displacement / Differential Length (dl):

It is given as

dl = dra, + rdea, + dza,
Differential length for a line parallel to r, ® and z axis are respectively given as:

dl = dra,---( For a line parallel to r-direction).
dl =rdga, ---( For a line Parallel to ®-direction).
dl = dza, ---( For a line parallel to z-axis).

Differential Normal Surface (ds):

Differential surface is basically a cross product between two parameters of the surface.
The differential surface (area element) is defined as

ds = dsay
Wherea,, is the unit vector perpendicular to the surface.

This surface describes a circular disc. Always remember- To define a circular disk we
need two parameter one distance measure and one angular measure. An angular parameter
will always give a curved line or an arc.

In this case d® is measured in terms of change in arc.

EMTL



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT. OF ECE

Arc is given as:
Arc= radius * angle

ds = rdrdea,
ds = drdza,
ds = rdrdea,

Differential Volume:

The differential volume element (dv) can be expressed in terms of the triple product.
dv = rdrdedz

3. Spherical coordinate System:

Spherical coordinates consist of one scalar value (r), with units of distance, while the other two
scalarvalues (0, ®) have angular units (degrees or radians).

A Vector in Spherical System is represented as (Ar ,Ae, Aa) Or
A= A.a, + Agag + A,a,
Wherea,,ag and a,, are the unit vectors inr, 6 and @ direction respectively.

The physical significance of each parameter of spherical coordinates:

1. The value r expresses the distance of the point from origin (i.e. similar to
altitude). It is the radius of the sphere.

2. The angle 6 is the angle formed with the z- axis (i.e. similar to latitude). It is also
called the co-latitude angle. It is measured clockwise.

3. Theangle @, also called the azimuthal angle, indicates the rotation angle around the z-
axis (i.e. similar to longitude). It is basically measured from the x axis in the x-y plane.
It is measured counter-clockwise.

Range of the variables:

It defines the minimum and the maximum value that r, 0 and v can have in spherical co-ordinate
system.

0<r<w
0<0<nm
0<P<2n
12
a,
Ay
P
0
4
a,
“ — -y
i 10
9
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Differential length:

It is given as

dl = dra, + rdfay + rsin 6 dea,

Differential length for a line parallel to r, 6 and ® axis are respectively given as:
dl = dra,--(For a line parallel to r axis)

dl = rdfag---( For a line parallel to 6 direction)

dl=rsin 6 dpa, --(For a line parallel to @ direction)

Differential Normal Surface (ds):

Differential surface is basically a cross product between two parameters of the surface.
The differential surface (area element) is defined as

ds = dsay
Wherea,, is the unit vector perpendicular to the surface.

ds = rdrdoa,
ds = r?sin 8 dpd6a,

ds =rsin@drdeay
Differential Volume:

The differential volume element (dv) can be expressed in terms of the triple product.
dv = r?sin 0 drdpd6

11
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Coordinate transformations

Transformation | Coordinate Variables |

Unit Vectors

Vector Components

Cartesian to r= 32+ i =%cos¢+§sing Ay = Arcosd + Aysing
cylindrical ¢ = tan~1(y/x) ¢ = —Xsing + yeos¢ Ay = —Aysing 4+ Aycosd
I=12 i=1 Az =4;
Cylindrical to X=rcosd i:fms¢—§m¢ Ar=Arcos — Agsing
Cartesian y=rsing y=rsing +¢cosd Ay = Arsing +Agcosg
. 83 A=A
Cartesian to R= 324y 472 R =sinBcos o A = A;sinfcos
spherical +ysinfsing +2zcos o + AysinBsin ¢ 4+ A; cos
6 =tan![/x2+?2/z] | 8 =%cos@coso Ag = Agcosfcosp

¢ =tan(y/x)

+Veos@sing —Zsiné
= —Xsing +Feosg

+AycosBsing —A;siné

Spherical to
Cartesian

X=RsinBcosg

i=ﬁsj£19cos¢: .
+8cosBeosp —dsma

Ay = Agrsin 6 cos ¢
+AgcosBcosd —Agsing

y=Rsin6sin ¢ y=Rsinfsing Ay = Agsin@sin ¢
+0cosHsing +dcosd +AgcosOsing + Ay cosd
z=Rcosh 5=Rcosf —Osinb A; =Agcosf — Agsin @
Cylindrical to R=yri4 2 R =1fsin6+2cosd Ap =A,sin6 +A;cosb
spherical 6 =tan—(r/z) @zi‘:cosﬂ—ism& Ag = Arcosf — A;sinf
o= o=9 Ap =45
Spherical to r=Rsin® i = Rsin® +6cos® A, =Apsinf + Agcos @
cylindrical =1 ¢=¢ ) Ay = Ay
z=Rcosd Z=Rcosf —Bsindh A; = Agcosf — Agsin B

EMTL
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Vector relations in the three common coordinate systems.

Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates
Coordinate variables X ¥Z ¢,z R. 6.
Vector representation A = XA+ FAy +24; PA; +0A, + 24, RAg +04g + 04,
Magnitude of A |A| = (/A +HAF+AZ (AR AL+ A2 Y AR+ A5 +AG
Position vector OF = %0 + %+ 221, ir + iz, RR;
for P(x1,%1.21) for P(r1,¢1.21) for P(R1, 61, 1)
Base vectors properties IX=Vv-¥=2-i=1 i"-i‘"=$-$=i-2=l R-R=0- 6:;6 1
X2 §F=9-2i=2-%=0|T-¢=0-2=2-T=0 R-06=0-¢=0¢-R=0
XV =12 Ixp=2 Rx0=¢
¥xZI=X dxZI=T 8x¢=R
IxX=¥ ixt=4¢ ¢xR 0
Dot product A-B= AyB,+AB, +AB, AB+A;By +AB; ApBr+AgBg +AuB,
¥ vV oz r i z R @ 6
Cross product AxB= Ay Ay Az Ay A A Ar Ag Ap
By By B: B; Bs B; Br Bs B
Differential length  dl= Xdx+ydy+zdz Pdri¢rdp+idz | RAR - BRdO +@Rsind dg
Differential surface areas ds, =X dydz ds, =trdg dz dsg = RR2sin 0 d6 dd
dsy =¥ dx dz dsy = ¢ dr dz dsg = ORsin® dR d
ds; =z dxdy ds; = Zrdrdg dss =@RdR A0
Differential volume 4V = dxdydz rdrdg dz R2sin® dRd6 dip

DIVERGENCE THEOREM:

It states that the net outward flux of a vector field A through a closed surface S is equal to the
volume integral of the divergence of the field A inside the surface.

STOKES THEOREM:

It states that the circulation of a vector field A around a closed path L is equal to the
surface integral of the curl of A over the open surface S bounded by L.

13
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Electrostatics:

Electrostatics is a branch of science that involves the study of various phenomena caused by
electric charges that are slow-moving or even stationary. Electric charge is a fundamental
property of matter and charge exist in integral multiple of electronic charge. Electrostatics as the
study of electric charges at rest.

The two important laws of electrostatics are

e (Coulomb‘s Law.
e (Gauss‘s Law.

Both these laws are used to find the electric field due to different charge configurations.

Coulomb‘s law is applicable in finding electric field due to any charge configurations where as
Gauss‘s law is applicable only when the charge distribution is symmetrical.

Coulomb's Law

Coulomb's Law states that the force between two point charges Qland Q2 is directly
proportional to the product of the charges and inversely proportional to the square of the distance
between them.

A point charge is a charge that occupies a region of space which is negligibly small compared to
the distance between the point charge and any other object.
Point charge is a hypothetical charge located at a single point in space. It is an idealized model of

a particle having an electric charge.

F= kQIQE
. 2 . L
Mathematically, R , Where K is the proportionality constant.

In SI units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters.

= 1
4e,

Force Fisin Newtons (N) and , f0 s called the permittivity of free space.
(We are assuming the charges are in free space. If the charges are any other dielectric medium,

LA

we will use r instead where % is called the relative permittivity or the dielectric

constant of the medium).

2
Therefore AEy R (1) 14
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-

As shown in the Figure 1 let the position vectors of the point charges Qland Q2 are given by "

and " . Let i represent the force on Q1 due to charge Q2.

i

o
Fig 1: Coulomb's Law

TRTRITRET

R
The charges are separated by a distance of | We define the unit vectors as

- (”":4_”"1) - (”"1_”"2)
12 T 7} I
and R
T - Ly _ (i )
12 7y —
= 478, R e, RE [ _ ’3
12 can be defined as RN

—_—

Similarly the force on Q1 due to charge Q2 can be calculated and if ) represents this force then

we can write “21 = "z

When we have a number of point charges, to determine the force on a particular charge due to all

other charges, we apply principle of superposition. If we have N number of charges

- —+ —_—

Q1,Q2,ee.. Qn located respectively at the points represented by the position vectors 1,72 ...
, the force experienced by a charge Q located at *is given by,
7. 2 %at-n
47, 3 |,r - ,;’3
15
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Electric Field:

Electric field due to a charge is the space around the unit charge in which it experiences a force.
Electric field intensity or the electric field strength at a point is defined as the force per unit
charge.

Mathematically,

E=F/Q
OR
F=EQ

The force on charge Q is the product of a charge (which is a scalar) and the value of the
electric field (which is a vector) at the point where the charge is located. That is

The electric field intensity E at a point r (observation point) due a point charge Q located at +'

(source point) is given by:

5. 200,
47, |r -r
For a collection of N point charges Q1,Qz,......... Qw located at 1,72 ,......"¥ | the electric field

intensity at point #'is obtained as

zo iQi(;—;;)
a7 &

7E, _;:’3
The expression (6) can be modified suitably to compute the electric filed due to a continuous

distribution of charges.

In figure 2 we consider a continuous volume distribution of charge (t) in the region denoted as

the source region.

For an elementary charge @< = 2(rJ4v" o considering this charge as point charge, we can

write the field expression as:

d§=dgiéh=p§mwﬁ—ﬁ
47re, |;_;~.f 4ire, |;—;7r

16
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Source region

Fig 2: Continuous Volume Distribution of Charge

When this expression is integrated over the source region, we get the electric field at the point P
due to this distribution of charges. Thus the expression for the electric field at P can be written

as:

T = (20T,
1[4;??'&',:,.?' rr

Similar technique can be adopted when the charge distribution is in the form of a line charge

density or a surface charge density.

7 - z[,a;(r:l(r )
4;?TEDr rr

5 - l,ojcr:w(r e
4;?TEDr r

Electric Lines of Forces:
Electric line of force is a pictorial representation of the electric field.

Electric line of force (also called Electric Flux lines or Streamlines) is an imaginary straight or
curved path along which a unit positive charge tends to move in an electric field.

Properties Of Electric Lines Of Force:

1. Lines of force start from positive charge and terminate either at negative
charge or move to infinity.

2. Similarly lines of force due to a negative charge are assumed to start at
infinity and terminate at the negative charge.

17
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10.

The number of lines per unit area, through a plane at right angles to the lines, is
proportional to the magnitude of E. This means that, where the lines of force are close
together, E is large and where they are far apart E is small.

If there is no charge in a volume, then each field line which enters it must also leave it.
If there is a positive charge in a volume then more field lines leave it than enter it.

If there is a negative charge in a volume then more field lines enter it than leave it.
Hence we say Positive charges are sources and Negative charges are sinks of the field.
These lines are independent on medium.

Lines of force never intersect i.e. they do not cross each other.

Tangent to a line of force at any point gives the direction of the electric field E at that
point.

Electricfluxdensity:

As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the field at

a particular point. The electric field depends on the material media in which the field is being

considered. The flux density vector is defined to be independent of the material media (as we'll

see that it relates to the charge that is producing it).For a linear isotropic medium under

consideration; the flux density vector is defined as:

D=¢cH

We define the electric flux as

= lﬁd;

18
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Gauss's Law:

Gauss's law is one of the fundamental laws of electromagnetism and it states that the total

electric flux through a closed surface is equal to the total charge enclosed by the surface.

Fig 3: Gauss's Law

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric

constant . The flux density at a distance r on a surface enclosing the charge is given by

T-cb-_H 4

— il
a
dr 7

If we consider an elementary area ds, the amount of flux passing through the elementary area is

given by

_ _ e

g = Dds s dscos 8
darr
dscos 8 _ 20
But , is the elementary solid angle subtended by the area @ at the location of Q.
dyr= 2 q

Therefore we can write 4

= gy 43?&9 -0
For a closed surface enclosing the charge, we can write d

which can seen to be same as what we have stated in the definition of Gauss's Law.

19
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Hence we have,

Qenc = f’c D.ds = fl}v dv
8 v

Applving Divergence theorem we have,

%D.{ls — f?+D dv
=

8

Comparing the above two equations, we have

fﬂh[} dv = J’Dv dv
= <

This equation is called the 1st Maxwell's equation of electrostatics.

Application of Gauss's Law:

Gauss's law is particularly useful in computing £ or L'where the charge distribution has some

symmetry. We shall illustrate the application of Gauss's Law with some examples.

—

1. £ dueto an infinite line charge

As the first example of illustration of use of Gauss's law, let consider the problem of
determination of the electric field produced by an infinite line charge of density C/m. Let us
consider a line charge positioned along the z-axis as shown in Fig. 4(a) (next slide). Since the
line charge is assumed to be infinitely long, the electric field will be of the form as shown in Fig.
4(b) (next slide).

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can

write,

o4 =0 =cfeDE.dE=fﬁ.d%fjﬁ%fjd&’
Considering the fact that the unit normal vector to areas Si and Ss are perpen%cular to the

electric field, the surface integrals for the top and bottom surfaces evaluates to zero. Hence we

EMTL
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can write, £ = &2

!

Y
/

;

(b)

Fig 4: Infinite Line Charge

E _ &
2T 0

2,

2. Infinite Sheet of Charge
As a second example of application of Gauss's theorem, we consider an infinite charged sheet

covering the x-z plane as shown in figure 5. Assuming a surface charge density of Fs for the

infinite surface charge, if we consider a cylindrical volume having sides £ placed symmetrically
as shown in figure 5, we can write:

$ D ds = 2Dhs = P bs
=

-
E='54
E‘D ¥

21

EMTL



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT. OF ECE

-

x

Fig 5: Infinite Sheet of Charge

It may be noted that the electric field strength is independent of distance. This is true for the
infinite plane of charge; electric lines of force on either side of the charge will be perpendicular
to the sheet and extend to infinity as parallel lines. As number of lines of force per unit area gives
the strength of the field, the field becomes independent of distance. For a finite charge sheet, the

field will be a function of distance.

3. Uniformly Charged Sphere
Let us consider a sphere of radius rO having a uniform volume charge density of rv C/m3. To

—_—

determine £’ everywhere, inside and outside the sphere, we construct Gaussian surfaces of
radius r <r0 and r > r0 as shown in Fig. 6 (a) and Fig. 6(b).

For the region 7 < : the total enclosed charge will be
4
Qﬂ = .'Gv EWE

(2)

22
Fig 6: Uniformly Charged Sphere
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By applying Gauss's theorem,

i
Dds= Dot sin 8d8d¢ = mrD, =
? g ;_I‘MID L sin g=dmr-D =0

Therefore

E:T=%p1,&, 0<r<n

For the region " 270 the total enclosed charge will be

4
Qew =5 g???’,‘f

By applying Gauss's theorem,

3

— 'rl|:| -
D=?,Gvczr Finm

Electric Potential / Electrostatic Potential (V):

If a charge is placed in the vicinity of another charge (or in the field of another charge), it
experiences a force. If a field being acted on by a force is moved from one point to another, then

work is either said to be done on the system or by the system.

Say a point charge Q is moved from point A to point B in an electric field E, then the

work done in moving the point charge is given as:

WA—B=-JAB (F.dl)=-QJAB(E. dl)

where the — ve sign indicates that the work is done on the system by an external agent.

23
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The work done per unit charge in moving a test charge from point A to point B is the
electrostatic potential difference between the two points(VAB).

VAB = WA—B/Q
-JAB(E . d)

- [InitialFinal (E . dI)

If the potential difference is positive, there is a gain in potential energy in the movement,
external agent performs the work against the field. If the sign of the potential difference is
negative, work is done by the field.

The electrostatic field is conservative i.e. the value of the line integral depends only on
end points and is independent of the path taken.

B

&

A

- Since the electrostatic field is conservative, the electric potential can also be written as:

24
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Thus the potential difference between two points in an electrostatic field is a scalar field that
is defined at every point in space and is independent of the path taken.

- The work done in moving a point charge from point A to point B can be written as:

WA—-B=-Q[Ve—Val= —Q [ E.dl
- Consider a point charge Q at origin O.

Now if a unit test charJe is moved from point A'to Point B, then the potential difference between
them is given as:

B I s

Vap=- [E.dt=-{E.a=- [ ©_ a.dra,
A : j At
: A A

Q (1 1 % iy
Wie— o= | ax¥n=V
4me|'s i B

- Electrostatic potential or Scalar Electric potential (V) at any point P is given by:

25
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The reference point Po is where the potential is zero (analogues to ground in a circuit).
The reference is often taken to be at infinity so that the potential of a point in space is
defined as

P —
V=—f E.dl

Basically potential is considered to be zero at infinity. Thus potential at any point ( rB =r) due
to a point charge Q can be written as the amount of work done in bringing a unit positive
charge frominfinity to that point (i.e. rA — o0)

Electric potential (V) at point r due to a point charge Q located at a point with position vector
rlis given as:

V= Q
4TE|T - 1]

Similarly for N point charges Q1, Q2 ....Qn located at points with position vectors r1,
r2, r3.....rn, theelectric potential (V) at point r is given as:

N
. 1 Qk V- Q

4TE

k=1 [T -1y | AL

The charge element dQ and the total charge due to different charge distribution is given as:
dQ=pldl — Q=L (pldl) — (Line Charge)
dQ =psds — Q=S (psds) — (Surface Charge)

dQ=pvdv — Q= v (pvdv) — (Volume Charge)

3 pL (“ 3

\=nt s ; (Line Charge)
J Ame|r-n|
L

V= I Py ds (Swrface Charge)
JATE |[r-1|
S

V = I Py dv (Volume Charge)
Jang|r-r|
v 26
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Second Maxwell’s Equation of Electrostatics:

The work done per unit charge in moving a test charge from point A to point B is the
electrostatic potential difference between the two points(Vag).

Vag=Ve—Va
Similarly,
Vea=Va—Vs

Hence it‘s clear that potential difference is independent of the path taken. Therefore

Vag =- Vea
Vag+ Vea =0

JAB(E.d)+[-/BA(E.dl)]=0

%E.(ll=0
L

The above equation is called the second Maxwell‘s Equation of Electrostatics in integral form..
The above equation shows that the line integral of Electric field intensity (E) along a closed path

is equal to zero.

In simple words—No work is done in moving a charge along a closed path in an electrostatic
field.

Applying Stokes® Theorem to the above Equation, we have:

3(]2 .dl = f(?xE)ods =
: ;

S

—>VXE=0

If the Curl of any vector field is equal to zero, then such a vector field is called an Irrotational or

Conservative Field. Hence an electrostatic field is also called a conservative field.

;l"he above equation is called the second Maxwell‘s Equation of Electrostatics in differential
orm.

27
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Relationship Between Electric Field Intensity (E) and Electric Potential (V):

Since Electric potential is a scalar quantity, hence dV (as a function of x, y and z variables) can
be written as:

av v ayv
y : { + — dY S dz
d\ 3 dx T dy 4 = (
V. . aV. V. | ¢ :
ax x4 2o Ay -|dmx tdyva, 4 dza, | =-FE.dl

V.dl=-E.dl —> HI

Hence the Electric field intensity (E) is the negative gradient of Electric potential (V).
The negative sign shows that E is directed from higher to lower values of V i.e. E is opposite to
the direction in which V increases.

Energy Density In Electrostatic Field / Work Done To Assemble Charges:

In case, if we wish to assemble a number of charges in an empty system, work is required to do
s0. Also electrostatic energy is said to be stored in such a collection.

Let us build up a system in which we position three point charges Q1, Q2 and Q3 at position r1,
r2 and r3 respectively in an initially empty system.

Consider a point charge Q1 transferred from infinity to position rl in the system. It takes no
work to bring the first charge from infinity since there is no electric field to fight against (as the
system is empty i.e. charge free).

Hence, W1=01J

Now bring in another point charge Q2 from infinity to position r2 in the system. In this case we
have to do work against the electric field generated by the first charge Q1.

Hence, W2 = Q2 V21

where V21 is the electrostatic potential at point r2 due to Q1.

- Work done W2 is also given as:

W, = QZQ].
T 4ATE |1,- 1]
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Now bring in another point charge Q3 from infinity to position r3 in the system. In this case
we have to do work against the electric field generated by Q1 and Q2.

Hence, W3=Q3V31+Q3V32=Q3(V31+V32)

where V31 and V32 are electrostatic potential at point r3 due to Q1 and Q2 respectively.

The work done is simply the sum of the work done against the electric field generated by
point charge Q1 and Q2 taken in isolation:

\:\,r3= Q3Q1 4 Q3QZ
ATE |ry-1|  4TE |13-1,|

- Thus the total work done in assembling the three charges is given as:

WE =W1+ W2+ W3
0+Q2V21+Q3(V31+V32)

Also total work done ( WE ) is given as:

1 Q,Q; | Q3Q, |QSQz

W=
ATE | 11y [ry-n] |1y 1)

If the charges were positioned in reverse order, then the total work done in assembling them
is given as:

WE = W3 + W2+ W1
= 0 + Q2V23 + Q3( V12+ V13)

29
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Where V23 is the electrostatic potential at point r2 due to Q3 and V12 and V13 are electrostatic
potential at point rl1 due to Q2 and Q3 respectively.

- Adding the above two equations we have,

2WE = Q1 (V12 + V13) + Q2 (V21 + V23) + Q3 (V31 + V32)
=QLV1+Q2V2+Q3V3

Hence

WE =1/2[Q1V1 + Q2V2 + Q3V3]

where V1, V2 and V3 are total potentials at position r1, r2 and r3 respectively.

- The result can be generalized for N point charges as:

N
;1 .
Wi 5 X QY
k=1

The above equation has three interpretation: This equation represents the potential energy of the
system.This is the work done in bringing the static charges from infinity and assembling them in
the required system. This is the kinetic energy which would be released if the system gets
dissolved i.e. the charges returns back to infinity.

In place of point charge, if the system has continuous charge distribution ( line, surface or
volume charge), then the total work done in assembling them is given as:

W= % fljrl'i'dl (Line Charge)
L

Wg = ..lz'_ J PVids  (Smrface Charge)

5

W= %-’-F\-\" dv  (Volume Charge)
£
30
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Sincepv=V.DandE=-VV,

Substituting the values in the above equation, work done in assembling a volume charge
distribution in terms of electric field and flux density is given as:

Wy = -lszE dy = %faEzdv

A% v

The above equation tells us that the potential energy of a continuous charge distribution
is stored in an electric field.

The electrostatic energy density wE is defined as:

-~

EE2 ; W= ’WEdv

v

\"E = 12-

ELECTROSTATICS-II

Properties of Materials and Steady Electric Current:

Electric field can not only exist in free space and vacuum but also in any material medium. When
an electric field is applied to the material, the material will modify the electric field either by
strengthening it or weakening it, depending on what kind of material it is.

Materials are classified into 3 groups based on conductivity / electrical property:

e Conductors (Metals like Copper, Aluminum, etc.) have high conductivity (¢ >> 1).
e Insulators / Dielectric (Vacuum, Glass, Rubber, etc.) have low conductivity (o << 1).
e Semiconductors (Silicon, Germanium, etc.) have intermediate conductivity.

Conductivity (o) is a measure of the ability of the material to conduct electricity. It is
the reciprocal of resistivity (p). Units of conductivity are Siemens/meter and mho.

The basic difference between a conductor and an insulator lies in the amount of free electrons
available for conduction of current. Conductors have a large amount of free electrons where as
insulators have only a few number ofelectrons for conduction of current. Most of the conductors
obey ohm‘s law. Such conductors are also called ohmic conductors.

Due to the movement of free charges, several types of electric current can be caused.
The different types of electric current are:

e Conduction Current.

e Convection Current.

e Displacement Current.
31
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Electric current:

Electric current (1) defines the rate at which the net charge passes through a wire of
cross sectional surface area S.

Mathematically,

If a net charge AQ moves across surface S in some small amount of time At, electric current(I)
is defined as:

[= im 29 _4Q

How fast or how speed the charges will move depends on the nature of the material medium.

Current density:

Current density (J) is defined as current Al flowing through surface AS.

Imagine surface area AS inside a conductor at right angles to the flow of current. As the
area approaches zero, the current density at a point is defined as:

J-1m 2L
As=0 LS

The above equation is applicable only when current density (J) is normal to the surface.

In case if current density(J) is not perpendicular to the surface, consider a small area ds of
the conductor at an angle 0 to the flow of current as shown:

~— ~—> —
— I
~— .
o ds

In this case current flowing through the area is given as:

dl=JdScos®=J.dS and 1=[].ds
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Where angle 0 is the angle between the normal to the area and direction of the current.

From the above equation it‘s clear that electric current is a scalar quantity.

CONVECTION CURRENT DENSITY:

Convection current occurs in insulators or dielectrics such as liquid, vacuum and rarified gas.
Convection current results from motion of electrons or ions in an insulating medium. Since
convection current doesn‘t involve conductors, hence it does not satisfy ohm‘s law. Consider a
filament where there is a flow of charge pv at a velocity u = uy ay.

£S m?
u
— 21—
- Hence the current is given as:
£Q
L1 = N3
But we know |2Q = Py, £V
Hence
Z LAY
Ll = Y —'h —prﬁsf——l
Lt Lt Lt
- PytSuy
. £
Again, we also know that |J, - —
- AS
I |
Hence Jy=— = Pyuy
LS
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Where uy is the velocity of the moving electron or ion and py is the free volume charge density.
- Hence the convection current density in general is given as:

J=pvu
Conduction Current Density:

Conduction current occurs in conductors where there are a large number of free electrons.
Conduction current occurs due to the drift motion of electrons (charge carriers). Conduction
current obeys ohm‘s law.

When an external electric field is applied to a metallic conductor, conduction current

occurs due to the drift of electrons.

The charge inside the conductor experiences a force due to the electric field and hence should
accelerate but due to continuous collision with atomic lattice, their velocity is reduced. The net
effect is that the electrons moves or drifts with an average velocity called the drift

velocity (vd) which is proportional to the applied electric field (E).

Hence according to Newton‘s law, if an electron with a mass m is moving in an electric
field E with anaverage drift velocity vd, the the average change in momentum of the free
electron must be equal to the applied force (F = - e E).

muv
_d = - eE
T

where T is the average tilne interval
between collision.

o lRk

The drift velocity per unit applied electric field is called the mobility of electrons (pe).

vd=-pueE

where pe is defined as:
e = | ﬂ]
m
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Consider a conducting wire in which charges subjected to an electric field are moving with

drift velocity vd.

Say there are Ne free electrons per cubic meter of conductor, then the free volume
charge density(pv)within the wire is

pv=-¢e Ne

The charge AQ is given as:

AQ=py AV =-e Ne AS Al=- e Ne AS vd At

- The incremental current is thus given as:

£Q
(T = e %= s NoeASD
| It ¢ d
Now since | Vg=- e E
Therefore

The conduction current density is thus defined as:

iy |

‘JC= oz =Neell-eE = OE

LS

where o is the conductivity of the material.

The above equation is known as the Ohm‘s law in point form and is valid at every point

in space.

In a semiconductor, current flow is due to the movement of both electrons and
holes, hence conductivity is given as:

6 =(Ne pe + Nh ph )e
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DIELECTRC CONSTANT:
It is also known as Relative permittivity.

If two charges g 1 and q 2 are separated from each other by a small distance r. Then by
using the coulombs law of forces the equation formed will be

F() — 1 q1492
dmeg T2

In the above equation €0 is the electrical permittivity or you can say it, Dielectric constant.

If we repeat the above case with only one change i.e. only change in the separation
medium between the charges. Here some material medium must be used. Then the
equation formed will be.

_ 1 ag
Fm o=
dmeg T2
Now after division of above two equations

m

In the above figure

o~

"I s the Relative Permittivity. Again one thing to notice is that the dielectric constant is

o~

represented by the symbol (K) but permittivity by the symbol or
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CONTINUITY EQUATION:

The continuity equation is derived from two of Maxwell's equations. It states that the
divergence of the current density is equal to the negative rate of change of the charge density,

dp
VI=——.

Derivation

One of Maxwell's equations, Ampere's law, states that

dD
VxH=J+ —.
"
Taking the divergence of both sides results in
oV -D
V.-VxH=V.J+ ——,
ot
but the divergence of a curl is zero, so that
oV -D
AVAR | = 0. 1)
o (1
Another one of Maxwell's equations, Gauss's law, states that
V-D=p
Substitute this into equation (1) to obtain
op _
V-J
il

which is the continuity equation.
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1.13

RELAXATION TIME:

Let us congider that a charge is introduced at some interier point of a given material
(conductor or diclectric)
From, continuity of current equation, we have

J= i----m

i

We have, the point form of Ohm™s law as,

T o bE===(2)
From Gauss's law, we have,

VD [ =eVE-{|:D-cE|

AVE=L (1)

=

Substitute equations (2} and (3) in equation (17, we get

V6Ef=6VE=6d-=

= ot

The above equation is a homogeneous linear ordinary differential equation. By separating
variable in eq (4), we pet,

of =
9 =6,
i =
A -
ALY
(&) =

Maow integrate on both sides of above equation
[
o [

sl f =24l [,

Where In pyois a constant of integration.
Thus,
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In eq (5), fie is the inttial charge density (i.c fv at =0).

We can see from the equation that as a result of introducing charge at some interior point of
the material there 15 a decay of volume charge density f,.

The time constant “T,” is known as the relaxation time or rearrangement time.

Relaxation time is the time it takes a charge placed in the interior of a material to drop to ¢
= 36.% pereent fits imitial value.

The relation time is short for good conductors and long for good dielectrics.
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LAPLACE'S AND POISSON'S EQUATIONS:

A useful approach to the calculation of electric potentials is to relate that potential to the
charge density which gives rise to it. The electric field is related to the charge density by the
divergence relationship

F = electric field

V-E= Z‘ P =charge density
0
E(] = permittivity

and the electric field is related to the electric potential by a gradient relationship

E=-VV

Therefore the potential is related to the charge density by Poisson's equation

V.vv=vv= £
€y

In a charge-free region of space, this becomes LaPlace's equation

ViV =0

This mathematical operation, the divergence of the gradient of a function, is called the
LaPlacian. Expressing the LaPlacian in different coordinate systems to take advantage of the
symmetry of a charge distribution helps in the solution for the electric potential V. For example,
if the charge distribution has spherical symmetry, you use the LaPlacian in spherical polar
coordinates.

Since the potential is a scalar function, this approach has advantages over trying to calculate the
electric field directly. Once the potential has been calculated, the electric field can be computed
by taking the gradient of the potential.
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Polarization of Dielectric:

If a material contains polar molecules, they will generally be in random orientations when
no electric field is applied. An applied electric field will polarize the material by orienting
the dipole moments of polar molecules.

Unpolarized

This decreases the effective electric
field between the plates and will
increase the capacitance of the parallel
plate structure. The dielectric must be

a go_od_ electric insulator so as to Polarized by an applied electric field.
minimize any DC leakage current & B B i b

through a capacitor. @ @ @ @ @ @ @
DD OO

The presence of the dielectric decreases the electric field produced by a given charge density.

o

E e —
olarization .,
P ke,

effective = E - E

The factor k by which the effective field is decreased by the polarization of the
dielectric is called the dielectric constant of the material.

Capacitance:

The capacitance of a set of charged parallel plates is increased by the insertion of adielectric
material. The capacitance is inversely proportional to the electric field between the plates,
and the presence of the dielectric reduces the effective electric field. The dielectric is
characterized by a dielectric constant k, and the capacitance is multiplied by that factor.

Parallel Plate Capacitor

| Plate area A B cA B kEOA

. | ; d d Show

The capacitance of flat, parallel metallic plates of area A and separation d is given by
the expression above where:

£,=8854 x 107 F/m 41
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= permittivity of space and

k = relative permittivity of the dielectric material between the plates.

k=1 for free space, k>1 for all media, approximately =1 for air.

The Farad, F, is the SI unit for capacitance and from the definition of capacitance is seen to
be equal to a Coulomb/Volt.

sbbbrbrd e EeES
(2o e e o —— R N
OV
' e d
- __o
For ait, EmEy EM:E'EW&"W‘E{,

80 A Thc caﬁwim isi _
increased by the (= b
| fator k. !

C=

Series and parallel Connection of capacitors
Capacitors are connected in various manners in electrical circuits; series and parallel connections

are the two basic ways of connecting capacitors. We compute the equivalent capacitance for such
connections.

Series Case: Series connection of two capacitors is shown in the figure 1. For this case we can
write,

= =£+£
¢ G

1
Ceqs I:jl Cﬂ
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Fig 1.: Series Connection of Capacitors

[0

| |

1 |
+0F -0 Clags
| oy | |

8]
+0f QI e €
+ -

| |

I 1

+7-

Fig 2: Parallel Connection of Capacitors
The same approach may be extended to more than two capacitors connected in series.
Parallel Case: For the parallel case, the voltages across the capacitors are the same.

The total charge & =% *&s =G + 0

Ty = ¢+,
Therefore, v

Capacitance of Parallel Plates:

g=ch The electric field between two large parallel plates
= charge on

plate | Plate area A Is  given by
— ]

T+ +F T+ FF AT = charae densit
F_O’_V E:g where ¢ . 5
> —;—g £ € = permittivity

— ] Q

and g = —
[ A

The voltage difference between the two plates can be expressed in terms of the workélone on
a positive test charge g when it moves from the positive to the negative plate.
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Ve work done 5 ﬂ = Ed
charge q

It then follows from the definition of capacitance that

c_Q_0Q _Qc_QAe_Ae
V Ed od Qd d

Spherical Capacitor:

The capacitance for spherical or cylindrical conductors can be obtained by evaluating
the voltage difference between the conductors for a given charge on each.

By applying Gauss' law to an charged conducting sphere, the electric field outside it is found to
be

% (§
dre,r-

The voltage between the spheres can be found by integrating the electric field along a radial line:

b
w2 [ La- L ]L L

drme, ) r° 4re,la b

From the definition of capacitance, the capacitance is

C= Q —_ 47t£()
w1 1]
a b

Isolated Sphere Capacitor:

An isolated charged conducting sphere has capacitance. Applications for such a capacitor may
not be immediately evident, but it does illustrate that a charged sphere has stored some energy as
a result of being charged. Taking the concentric sphere capacitance expression:

4re,

1 1
a b u

C =
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C = 4ne,R

] d
and taking the limits >R B D3 gives

Further confirmation of this comes from examining the potential of a charged conducting sphere:

V=
4me,r

so at the surface (C = g = 471'8”R
%

Cylindrical Capacitor:

For a cylindrical geometry like a coaxial cable, the capacitance is usually stated as a
capacitance per unit length. The charge resides on the outer surface of the inner conductor and
the inner wall of the outer conductor. The capacitance expression is

The capacitance for cylindrical orspherical conductors can be obtained by evaluating the voltage
difference between the conductors for a given charge on each. By applying Gauss' law to an
infinite cylinder in a vacuum, the electric field outside a charged cylinder is found to be

A
2me,r

The voltage between the cylinders can be found by integrating the electric field along a
radial line:

C A 2mke
i T A [b — =2 =%
ek [Lam Aaft]  EA LT
9. 0 W 2ne, |a a

From the definition of capacitance and including the case where the volume is filled
by a dielectric of dielectric constant k, the capacitance per unit length is defined above.

E=

o

45

EMTL



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT. OF ECE

Solved problems:

Problem1:

Find the charge in the volume defined by 0 Sx< 1m0 <y<Imand0<z<s | mif
p = 30 (uC/m*). What change occurs for the limits -1 < y < 0 m?

Since dQ = p dv,

0= I;L:L:wxz.vdxdydz=5uc

For the change in limits on y,
100 pl
o= [ [ [ 30xydvdydz=-5uc

Problem-2

Three point charges, @, = 30 nC, @, = 150 nC, and Q; = -70 nC, are enclosed by surface
§. What net flux crosses S?

Since electric flux was defined as originating on positive charge and terminating on
negative charge, part of the flux from the positive charges terminates on the negative
charge.

Woi= 04 =30+ 150 -70 =110 nC

Problem-3

A point charge, Q = 30 nC, is located at the origin in cartesian coordinates. Find the
electric flux density D at (1. 3, —-4) m.

Referring to Fig. 3.12, =
¢ 4::Qk2 e
g Y
30x107° (&, +3a, —4a,
© 4m(26) J26 8
X
a,+3a, —4a.
= (9.18 x 10-")(;‘——‘] C/m? (1.3,-4)
J26 N
: = 2
or, more conveniently, D = 91.8 pC/m~. Fig. 3.12

Problem-4

Given that D = 10xa, (C/m?), determine the flux crossing a 1-m? area that is normal to the
¥ axis at x = 3 m.

Since D is constant over the area and perpendicular to it,
¥ = DA = (30 C/m*)(1 m*) =30 C

46

EMTL



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT. OF ECE

Problem-5

Given the vector field A = 5x° (sin%’f)a,, find div A at x = 1.

(2 X

divA= i-)-(S)rzsin—’5£)= 5x2(cosv’—'{'~'()'E +10x sin®* = 3 a2 cos ®X 4 10x sinZX
ax 2)2 2 2 2 2

2
and div Al,., = 10.

Problem-6

Given that D = (10/4)a, (C/m?) in the region 0 < r < 3 m in cylindrical coordinates and
D = (810/4r)a, (C/m’) elsewhere, find the charge density.

For 0<r<3m,

19 |0r‘) 3

= o — = /
rar( 4 10r* (Clon’)

and for r>3m,

p=19 810/4)=0

ror

Problem-7

An electrostatic field is given by E = (x/2 + 2y)a, + 2xa, (V/m). Find the work done
in moving a point charge Q = -20 uC (a) from the origin to (4, 0, 0) m, and (b) from
(4, 0, 0) m to (4, 2, 0) m.

(a) The first path is along the x axis, so that dI = dx a,.

dW = -QE - dl = (20 x 10")(§+2y)dx

4
W= (20 x 10%) | (£+zy)dx=so,.:|
o\2
(b) The second path is in the a, direction, so that dI = dya,.

W= (20 x 104)j:2xdy=3zo,o

Problem-8
What electric field intensity and current density correspond to a drift velocity of
6.0 X 10~ m/s in a silver conductor?

Forsilver o =617 MS/m and u=5.6 x 107> m?/V - s.
y _ v -1
f= —=——— =107 x107' V/m
H 56x107
J= oF = 6.61 x 10° A/m?
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Problem-9

Find the current in the circular wire shown in Fig. 6.6 if the current
density is 3 = 15(1 - ¢719%%)a, (A/m?). The radius of the wire is 2 mm.

A cross section of the wire is chosen for S. Then
dl=) - dS
= 15(1 - 1%, . r dr dga,

and I= j:" | :”15(1 — e 1000), G

= 1.33 X 107 A = 0.133 mA /Pﬁ—-\ s
Any surface S which has a perimeter that meets the outer surface of

the conductor all the way around will have the same total current, J
I = 0.133 mA, crossing it. Fig. 6.6

Problem-10

Determine the relaxation time for silver, given that o = 6.17 x 10’ S/m. If charge of
density p, is placed within a silver block, find p after one, and also after five, time

constants.
Since € = &,
107936
tm B T g
o 6.17 x107
Therefore
at te=1: p=poe’ = 0.368p,
at t=57: p=pee” =6.74 x 107p,
Problem-11

Find the magnitudes of D and P for a dielectric material in which £ = 0.15 MV/m and
Xe = 4.25.

Since & = . + 1 = 5.25,
10°° P 2
D= goef = St (5.25)(0.15 x 10°) = 6.96 uC/m

Pm 2k = 13%% (4.25)(0.15 X 10°) = 5.64 uC/m?
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Problem-12

In order to illustrate the application of (13) or (14), let us find E at P(1, 1, 1) caused by
four identical 3-nC (nanocoulomb) charges located at Pi(1,1,0), Pa—1,1,0),
Py(—1,—1,0), and P4(1, —1,0), as shown in Fig. 2.4,

Solution. We find thatr =a, +a, +a., v, =a, +a,, and thusr —r; =a.. The magni-
tudes are: r—r =1, Ir—] =+5, Ir—r] =3, and |r— sl = +/5. Since O/ dmey =
3% 107%/(dr % 8.854 x 10712) = 26,96 V -m, we may now use (13) or (14) to obtain

E= zﬁ_gﬁ[ﬁ 1 2ta 1
N V5 (VEY
2a,+2a,+a. 1 2a,+a. 1
3 32 NG [v’fgil]

=

E =682a, +6.82a, + 328a. V/m

Problem-13

Ex. A charge (1 =-20uC is located at P (- 6, 4, 6) and a charge Q; =50pC is
located at R (5, 8, = 2) in a free space. Find the force exerted on Q2 by Qy in
vector form. The distances given are in metres.

Sol. :  From the co-ordinates of P and R , the respective position vectors are -

-63, +43y + 63,

5ay +8ay ~2a,
given by,

F, = 1o
F2 IneoRs, an

Riz = Rew =R-P=[5-(-6)] & +(8-4) 3, +[-2-(6)a:]
=113, +43, -84,
YD +(9)? +(-8)? =14.1774

P
and R
is

The force on Q3

LRn!
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z
4
5
)
F
....... g=-=m=m=msp
R©G
x (5.8-2)
Fig. 2.5
Ay = — =
| Rz 14.1774

anz = 0.7758 3, +0.2821 a, -0.5642 &,

- —20x 106 x50 % 10-6

Fz = — . :

? T Inx8.854 10 x(14.1774)2 [3:2]
= —(0.0447 [{}.??58 a, +0.2821 a, —0.5642 iz] . (A)
= -0.0346 4, —0.01261 &y +0.02522 3, N .. (B)
This is the required force exerted on Q2 by Q.
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Introduction:

In previous chapters we have seen that an electrostatic field is produced by static or stationary charges.
The relationship of the steady magnetic field to its sources is much more complicated.

The source of steady magnetic field may be a permanent magnet, a direct current or an electric
field changing with time. In this chapter we shall mainly consider the magnetic field produced by
a direct current. The magnetic field produced due to time varying electric field will be discussed
later.

There are two major laws governing the magneto static fields are:

e Biot-Savart Law

e Ampere's Law

Usually, the magnetic field intensity is represented by the vector & . It is customary to represent the
direction of the magnetic field intensity (or current) by a small circle with a dot or cross sign
depending on whether the field (or current) is out of or into the page as shown in Fig. 2.1.

lo e

H (or I') out of the page f_i"(or I') into the page

Fig. Representation of magnetic field (or current)

Biot- Savart’s Law:

This law relates the magnetic field intensity dH produced at a point due to a differential

current element 42! as shown in Fig.
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The magnetic field intensity & at P can be written as,

ldixé, IdixR

dH = 2 - :
xR 4R
2 = IdIS'mgcr
4R

where 5 |R| is the distance of the current element from the point P.

The value of the constant of proportionality 'K' depends upon a property called permeability of
the medium around the conductor. Permeability is represented by symbol 'm' and the constant 'K
is expressed in terms of 'm' as

Thus

K Idl sing
4 r2

dB =

Magnetic field 'B' is a vector and unless we give the direction of 'dB', its description is not
complete. Its direction is found to be perpendicular to the plane of 'r" and 'dl".

If we assign the direction of the current 'I' to the length element 'dl', the vector product dl x r has
magnitude r dl sing and direction perpendicular to 'r* and 'dl'.

Hence, Biot-Savart law can be stated in vector form to give both the magnitude as well as
direction of magnetic field due to a current element as

L I(diXr)
47N r3

dB =
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Similar to different charge distributions, we can have different current distribution such as

line current, surface current and volume current. These different types of current densities are
shown in Fig. 2.3.

il -
: df,r—lejdv
da -/
T
Line Current Surface Current Volume Current

Fig. 2.3: Different types of current distributions

By denoting the surface current density as K (in amp/m) and volume current density as J
(in amp/m2) we can write:

1di = Kds = Jdv

( It may be noted that { = £dw = Jda))

Employing Biot -Savart Law, we can now express the magnetic field intensity H. In terms of
these current distributions as

— xR
H =J 3 .
AR s for line current
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H Due to infinitely long straight conductor:

We consider a finite length of a conductor carrying a current :’placed along z-axis as shown in
the Fig 2.4. We determine the magnetic field at point P due to this current carrying conductor.

i

"

n

P P
Fig. 2.4: Field at a point P due to a finite length current carrying conductor

With reference to Fig. 2.4, we find that

.::1!’?=.:£zc;x and B = ,Gcz:—zaz,

Applying Biot - Savart's law for the current element ¢ ¢¢ \We can write,

— WIixR _ pdd,

df':' o _47!{’02 +22]3.-’2
Z=tan @
Substituting © we can write,

— "] o'sec’ ada I, .
H=[— &, = sin &, — sin a
. dr Osec’ @ %4 ( % aﬁ) <

o

- 0 — _ano®
We find that, for an infinitely long conductor carrying a current | , & =30 and 4~ 50
Therefore

b
2ne

H= a,

%)
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Ampere's Circuital Law:

Ampere's circuital law states that the line integral of the magnetic field ﬁ(circulation of H)
around a closed path is the net current enclosed by this path. Mathematically,

(Pﬁdf= L,
The total current | enc can be written as,
L, = l_f.d;
By applying Stoke's theorem, we can write
(P?f.df = l’VXEdE
vaﬁ.d;-’ =J?.d§

 VxXH=7

Which is the Ampere's circuital law in the point form and Maxwell’s equation for magneto static
fields.
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Applications of Ampere's circuital law:

1. Itis used to find H and B due to any type of current distribution.
2. If Hor Bisknown then it is also used to find current enclosed by any closed path.

We illustrate the application of Ampere's Law with some examples.

H Due to infinitely long straight conductor :( using Ampere's circuital law)

We compute magnetic field due to an infinitely long thin current carrying conductor as
shown in Fig. 2.5. Using Ampere's Law, we consider the close path to be a circle of
radius # as shown in the Fig. 4.5.

If we consider a small current element “4/(= #2d:) @ H s perpendicular to the plane

containing both di

H?‘,i.e., H=H¢c§¢.

and R(=pd,) . Therefore only component of Ethat will be present is

By applying Ampere's law we can write,

iz
§=L&¢ JHﬁpd.;aﬁ=H¢p2fr=f
2o
1
idi
H

Fig. Magnetic field due to an infinite thin current carrying conductor

o7
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H Due to infinitely long coaxial conductor :( using Ampere's circuital law)

We consider the cross section of an infinitely long coaxial conductor, the inner conductor
carrying a current | and outer conductor carrying current - | as shown in figure 2.6. We
compute the magnetic field as a function of € as follows:

In the region ©< €< &
2
Tl
1
P ome 2mat

In the region £ <2< &

Fig. 2.6: Coaxial conductor carrying equal and opposite currents in the region
RS p<R,

):v R32 v ’02

In the region P
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Magnetic Flux Density:

In simple matter, the magnetic flux density E related to the magnetic field intensity 7 as

B=08 \where # called the permeability. In particular when we consider the free space

—

_ T _ -7
B =t \yhere = 4107 L is the permeability of the free space. Magnetic flux density is

measured in terms of Wh/m 2 .

The magnetic flux density through a surface is given by:
Y= lEdE

Wb

In the case of electrostatic field, we have seen that if the surface is a closed surface, the net flux

passing through the surface is equal to the charge enclosed by the surface. In case of magnetic

field isolated magnetic charge (i. e. pole) does not exist. Magnetic poles always occur in pair (as

N-S). For example, if we desire to have an isolated magnetic pole by dividing the magnetic bar

successively into two, we end up with pieces each having north (N) and south (S) pole as shown

in Fig. 6 (a). This process could be continued until the magnets are of atomic dimensions; still

we will have N-S pair occurring together. This means that the magnetic poles cannot be isolated.

N N N
) | Wi
N
— ==
N N
Ny
N — -
s s 5 H or B lines
{a) by

Fig. 6: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a straight current carrying

conductor
Maxwell’s 2"9 equation for static magnetic fields:
Similarly if we consider the field/flux lines of a current carrying conductor as shown in Fig. 6
(b), we find that these lines are closed lines, that is, if we consider a closed surface, the number
of flux lines that would leave the surface would be same as the number of flux lines that would

enter the surface.

From our discussions above, it is evident that for magnetic field, 59
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fﬂ ds=10
...................................... in integral form
which is the Gauss's law for the magnetic field.

By applying divergence theorem, we can write:

cf?é.dE =JV.§dv =0

Hence, VE=0 in point/differential form

which is the Gauss's law for the magnetic field in point form.

Magnetic Scalar and Vector Potentials:
In studying electric field problems, we introduced the concept of electric potential that simplified
the computation of electric fields for certain types of problems. In the same manner let us relate

the magnetic field intensity to a scalar magnetic potential and write:

—_—

H=-vV,

From Ampere's law , we know that

—_—

UxH=J

Therefore, Vx(-V)=J

—_—

But using vector identity, * (V7 =0 we find that 2 = 77

» s valid only where & =0

Thus the scalar magnetic potential is defined only in the region where < =0 . Moreover, Vm in
general is not a single valued function of position. This point can be illustrated as follows. Let us
consider the cross section of a coaxial line as shown in fig 7.

— I

H=—"4

~ ’
In the region @€ <b 7 =0 and e
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Fig. 7: Cross Section of a Coaxial Line

If Vm is the magnetic potential then,

AT
_?p;=_l e

o dgh
i

2ree

L
If we set Vm =0 at #= 7 then ¢=0 and 27

SAt d=g F =—i¢%
2

We observe that as we make a complete lap around the current carrying conductor , we reach %
again but Vm this time becomes

Ly
7= (g v 2m)

We observe that value of Vm keeps changing as we complete additional laps to pass through the
same point. We introduced Vm analogous to electostatic potential V.
But for static electric fields,

VxE=0 gng PE 40

L = + Hedl=1 3
whereas for steady magnetic field ¥ *& =0 \wherever ¥ =0 but (P even if /=0

along the path of integration.
We now introduce the vector magnetic potential which can be used in regions where
current density may be zero or nonzero and the same can be easily extended to time varying

cases. The use of vector magnetic potential provides elegant ways of solving EM field problems.

~ v.[v><ﬁ)=o

Since ¥-& = Uand we have the vector identity that for any vector 4, , we

can write & =% ®.4

—

Here, the vector field 4 is called the vector magnetic potential. Its SI unit is Wh/m.

Thus if can find A of a given current distribution, B can be found from A through a curl

—

and 4 related its curl to 5. A vector

e}

operation. We have introduced the vector function

function is defined fully in terms of its curl as well as divergence. The choice of -4 is made as

follows. 61
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TR A= (T H = ul

.
By using vector identity, ¥ <V *A=V(V.A)-¥"4

T A -V A= ]
Great deal of simplification can be achieved if we choose ¥.-4= 0,

— 2_" _ -
Putting ¥-4=0  we get ¥ = "4 which is vector poisson equation.

In Cartesian coordinates, the above equation can be written in terms of the components as

VA4, = —pd,
V4, =-ud,
VA4 = -ud,

The form of all the above equation is same as that of

vy =-2
£

for which the solution is
-1 1y, R=-r]
dae d R

vA= ,uaﬁ
s

In case of time varying fields we shall see that , which is known as Lorentz condition, V being

the electric potential. Here we are dealing with static magnetic field, so *-4=0,

By comparison, we can write the solution for Ax as
Hoady o
= [ v
4 4;??,[ A
Computing similar solutions for other two components of the vector potential, the vector
potential can be written as
A= ivl‘idv'
A
This equation enables us to find the vector potential at a given point because of a volume current
density .

Similarly for line or surface current density we can write
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A=l
dxd R
A=t g
dmd R

The magnetic flux % through a given area S is given by

w=l§d§ _ _
Substituting & =¥ * A
= lvxﬁ.dE - cffé.aff

Vector potential thus have the physical significance that its integral around any closed path is
equal to the magnetic flux passing through that path.
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Forces due to magnetic fields

There are three ways in which the force due to magpetic fields can be experienced,
The force can be

(a) Force on a charged particle:

We have F=0QE

This shows that if Q) is positive, F, and E are in same direction, It is found that the
muagnetic force P experienced by a charge O moving with a velocity u in magnetic
field B is

Fo=Qux B

For a moving change () in the presence of both electric and magnetic ficlds, the total
foree on the charge s given by

F = F,Fa
ar
F=Q(E+u x B}

Thiz i known as Lorentz force eguation,

(b} Force on a current element:

To determine the force on a current element Idl of a current carrying conductor due
to the magnetic field B, we take the equation

i

)

We have Id= 22 41 — dp - % _ dp
. dl

Hence

Idl=dQ.u

This shows that an elemental charge d0) moving with velocity u {thereby producing
conviection current element dCu) is eguivalent 1o a conduction current element Idl.
Thus the force on current element 18 give by

dF=1dlx B

Ifthe current 1 is through a closed path L or circuit, the force on the circuit is given
by

= :_{ Idi = B

(e} Force between two current elements:

Congider the force between two elements Tidly and L. According to biotsavarts
law, both current slemeants produce magnetic fislds. Foree d{dF) on element T;d,
due to field dB: produced by element 1; dl; as shown i hgure below:
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d{d]‘|:| = J.|J_}|.'_ JL'EI.H;
But from biot Savarts law
gl dl, xa,,,

B, ——
4R,
Hemee
IF, n 2 4 ol
(e} = pag Al :-c{_.!"czl'.l'1 xah,]l

-Iﬂ-;'.‘.i"f;'l
This eguation is the law of force between two current elements.
pagd £y ®dg,, ::F:f‘:"l"rl = [:d'ir.l - GR.II]

[ R;I

We have F1

AT

Inductance:
Inductance is the ability of the material to hold energy in form of magnetic field,
L, T are inductance of material and current flowing in the material.

s Ly
2
Total MTux linking current [
current (1)

Inductance, L=
"Bis induced by T
o= JE.-;!E

Total Flux depends on oo of turns
Flux linking for n turns is “N¢*.

o [ A=TNd depending on condition e total

A
{ Flux lmking the current)

Inductance of a solenoid;
In the application of ampere™s law to solenokd we fowund that
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.-..r
ek Texla

HNTA

B =

Sop=8BA4
Whith in a loop of W turns, the fhax iz linking the current W times.
Jo Total flux linking 1= N
NI
i

A N4
L — w— #
7 )
Some times inductors are given for unit length ag well

[ CNY
L ——— —_ .4
! HI'J' J

Induoctance of coaxial calyle:

The toal Mux hinking the nner and outer conductors is same as the flux in the
conductor.

H=—t (47m)
8= wnrm®y
2ar
Here thux density 1= differing with radins

o= ﬁ.d}

: pad
_I:é J'2.-—;."' '
A% = drd=g
L &
-
= il
=11
2l oy
= 2 ;F r
A
poA_ M n[E]
i 2T ot
L u b
L —lnt—
[ 2 \La)
Where w is the permeability of medium used b'w inner and outer cores.

. . N g 66
Also there 15 current flowing even mside the imner core.
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pllma il

BT B
i 'f_ul'. _ir‘H}
S B
L TE
—=—In|—} H /m
{ 2 “:“K }

Here p is permeability of conductor

Total mductance [, . L.
Length { /

i by,

=—In| — |+ —

2 \a) 2

L=

A_Ng
I

To further illustrate the concept of inductance, let us consider two closed
loops C1 and C2 as shown in the figure 8, S1 and S2 are respectively the areas of C1 and C2 .

Fig:8
If a current 11 flows in C1 , the magnetic flux B1 will be created part of which will be linked to
C2 as shown in Figure 8:

&, = ‘I‘S2 Erd 5

In a linear medium, s is proportional to | 1. Therefore, we can write

ﬂfiz = Lufl 67
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where L12 is the mutual inductance. For a more general case, if C2 has N2 turns then

Ay = Mg,

and Ay =Lpd)
A

Iy =—k

or 4

i.e., the mutual inductance can be defined as the ratio of the total flux linkage of the second
circuit to the current flowing in the first circuit.
As we have already stated, the magnetic flux produced in C1 gets linked to itself and if C1 has

A

N1 turns then “*11~ Nl'ﬂl, where G is the flux linkage per turn.

Therefore, self inductance

Iy (or Las defined earlier) _

As some of the flux produced by I1 links only to C1 & not C2.
Ay =MNgy = Mgl =hy

dhy,
dl,

Ly = Iy =

Further in general, in a linear medium, and
Magnetic energy or Energy stored in Magnetic Field:
So far we have discussed the inductance in static forms. In earlier chapter we discussed
the fact that work is required to be expended to assemble a group of charges and this work is
stated as electric energy. In the same manner energy needs to be expended in sending currents
through coils and it is stored as magnetic energy. Let us consider a scenario where we consider a
coil in which the current is increased from 0 to a value I. As mentioned earlier, the self

inductance of a coil in general can be written as

A0 _de
i i
or Ldi=Ndg

If we consider a time varying scenario, 63
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18 _yee
ot ot
4¢
We will later see that ~ df is an induced voltage.
Lv= LE

df is the voltage drop that appears across the coil and thus voltage opposes the
change of current.
Therefore in order to maintain the increase of current, the electric source must do an work
against this induced voltage.
dW =i dt
= lidi

= [ Lids = lrp
f 2 (Joule)
which is the energy stored in the magnetic circuit.
We can also express the energy stored in the coil in term of field quantities.

For linear magnetic circuit

W:lﬁﬁ:lﬁr@*
2 7 2

—[BdS=584
Now, ¢ IS

where A is the area of cross section of the coil. If I is the length of the coil
Ni = HI

W= %HBHE

Al is the volume of the coil. Therefore the magnetic energy density i.e., magnetic energy/unit
volume is given by

In vector form

BH
J/mt3

¥ =

»m

Lo | —

is the energy density in the magnetic field.
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MAXWELL’S EQUATIONS (Time varying Fields)

Introduction:

In our study of static fields so far, we have observed that static electric fields are produced by
electric charges, static magnetic fields are produced by charges in motion or by steady current.
Further, static electric field is a conservative field and has no curl, the static magnetic field is
continuous and its divergence is zero. The fundamental relationships for static electric fields

among the field quantities can be summarized as:

TxE=0 (1)
VD=4 (o)
For a linear and isotropic medium,
D=¢ck (3)
Similarly for the magnetostatic case
vE=0 (4)
VxH=J (5)
UxH=J (6)

It can be seen that for static case, the electric field vectors £and £'and magnetic field

vectors Band # form separate pairs.
In this chapter we will consider the time varying scenario. In the time varying case we
will observe that a changing magnetic field will produce a changing electric field and vice versa.
We begin our discussion with Faraday's Law of electromagnetic induction and then
present the Maxwell's equations which form the foundation for the electromagnetic theory.

Maxwell's equations represent one of the most elegant and concise ways to state the
fundamentals of electricity and magnetism. From them one can develop most of the working
relationships in the field. Because of their concise statement, they embody a high level of
mathematical sophistication and are therefore not generally introduced in an introductory
treatment of the subject, except perhaps as summary relationships.

These basic equations of electricity and magnetism can be used as a starting point for advanced
courses, but are usually first encountered as unifying equations after the study of electrical and
magnetic phenomena.
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Symbols Used

E = Electric field p = charge density |i = electric current
B = Magnetic field €0 = permittivity ~ J = current density

D = Electric displacement  |u0 = permeability ¢ = speed of light

H = Magnetic field strength IM = Magnetization P = Polarization

Integral form in the absence of magnetic or polarizable media:

I. Gauss' law for electricity §E ‘dA = gi
0

Gauss' law for magnetism §B dA=0

dd,
dt

I11. Faraday's law of induction §E wls = —
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V. Ampere's law

Differential form in the absence of magnetic or polarizable media:

I. Gauss' law for electricity V- E = —e = 47l'kp
80
V-B=0

Gauss' law for magnetism

I11. Faraday's law of induction {/ x F = _a_B

ot

4k - 1 JE
¢ ¢’ ot
J " | OE
g,c ¢ ot

Nk D=

V. Ampere's law

k =L — Coulomb's .. ]
4re,  constant U E,

Differential form with magnetic and/or polarizable media:

_V:-D=p
I. Gauss' law for electricity -
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D=gE+P D=¢g,E Freespace
General D=¢E Isotropiaginear
case B dielectric
=0

Il. Gauss' law for magnetism

oB

1. Faraday's law of induction {V x f = — —

ot

oD
IV. Ampere's law ViH=J+—

ot

B=u,(H+M) p_ u,H Free space

General B=uH Isotropic linear
case magnetic medium

Faraday's Law:

Michael Faraday, in 1831 discovered experimentally that a current was induced in a conducting
loop when the magnetic flux linking the loop changed. In terms of fields, we can say that a time
varying magnetic field produces an electromotive force (emf) which causes a current in a closed
circuit. The quantitative relation between the induced emf (the voltage that arises from
conductors moving in a magnetic field or from changing magnetic fields) and the rate of change
of flux linkage developed based on experimental observation is known as Faraday's law.

Any change in the magnetic environment of a coil of wire will cause a voltage (emf) to be
"induced" in the coil. No matter how the change is produced, the voltage will be generated.
The change could be produced by changing the magnetic field strength, moving a magnet
toward or away from the coil, moving the coil into or out of the magnetic field, rotating the coil
relative to the magnet, etc.

Faraday's law is a fundamental relationship which comes from Maxwell's equations. It serves as

a succinct summary of the ways a voltage (or emf) may be generated by a changing magnetic
environment. The induced emf in a coil is equal to the negative of the rate of change of
magnetic flux times the number of turns in the coil. It involves the interaction of charge with
magnetic field.
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When two current carrying conductors are placed next to each other, we notice that each induces
a force on the other. Each conductor produces a magnetic field around itself (Biot— Savart law)
and the second experiences a force that is given by the Lorentz force.

| FORCE BETWEEN LONG PARALLEL CONDUCTORS

. g : = —
Current in same direction

<| - &

Mathematically, the induced emf can be written as

_d¢
Emf= & \olts

where ? is the flux linkage over the closed path.

dg

A non zero dt may result due to any of the following:

(a) time changing flux linkage a stationary closed path.

(b) relative motion between a steady flux a closed path.

(c) a combination of the above two cases.

The negative sign in equation (7) was introduced by Lenz in order to comply with the
polarity of the induced emf. The negative sign implies that the induced emf will cause a current
flow in the closed loop in such a direction so as to oppose the change in the linking magnetic
flux which produces it. (It may be noted that as far as the induced emf is concerned, the closed
path forming a loop does not necessarily have to be conductive).

If the closed path is in the form of N tightly wound turns of a coil, the change in the
magnetic flux linking the coil induces an emf in each turn of the coil and total emf is the sum of

the induced emfs of the individual turns, i.e.,

_yi¢
Emf = dt Volts
By defining the total flux linkage as -1
A=Ng
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The emf can be written as

_dA
Emf= dt
Continuing with equation (3), over a closed contour 'C' we can write
Edi
Emf = SFC'

where £ is the induced electric field on the conductor to sustain the current.

Further, total flux enclosed by the contour 'C ' is given by
&= F.d;:
Where S is the surface for which 'C' is the contour.
From (11) and using (12) in (3) we can write
B
cPcE..:if = - 5C‘ISS Bds

By applying stokes theorem

[ Vx Eds = [ 98 43
5 5 Of
Therefore, we can write
TR E = —E
¢
which is the Faraday's law in the point form
48

We have said that non zero @ can be produced in a several ways. One particular case is when a

time varying flux linking a stationary closed path induces an emf. The emf induced in a

stationary closed path by a time varying magnetic field is called a transformer emf .

(0]
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Inconsistency of amperes law

Ampere's circuit law states that the line integral of tangential component
ol IT around a closed path is game as the net current lenc enclosed by the
prath.
e

[Hadl=1,

By applying stoke’s theorsm,

J-H Al becomes J-J s

s Therelore, i-‘L\v-c H=J0 __ (3.14)
Thig 1 true in case of static EM fields.

But in case ol time-varying ficlds, the above Ampere’s law shows same
inconsistency,

The inconsistency of ampere law for time varying felds is shown in two cases:
1. For static EM ficlds, we have

Al =4
Applving divergence on both sides, we get,

AfA=H)=AJ
But divergence of curl of a vector field is always zeno,
Therefore,

AfAxH)=0=AJ
The continuity of current equation 1s given by

At ﬂ
]

Where J = Current density

e = Charge density

For static fields, no current is produced, therefore, ¢ =0 = AJS=10
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Implics cq. 3.15 is satisficd but for time varyving ficlds, current is produced
and therefore,

— e

AT Ty (3.16)
ot '

Eq. (3.15}) and eq. {3.16) are contradicting each other.

This is an inconsistency of ampere’s law and the Ampere's law must be
modilied for time varying fields.

2. Consider the tvpical example of where the surface passes between the
capacitor plates.

The Agure 15 shown below.

LN ik

Fig 1.2 1ak T serfeoes of indegrarian whigh explain the Ingonsisiency of Ampene's lamw

In fig 3.3(a),

Based on Ampere’s circuit law we get fgure

,—
(el
i
-]
ot

(77 it = [Fds=T r
frrai = frds=1,
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In fig 3.3(b), bazed the ampere’s circult law, we ger,

(H i = [Jds=1_ =0 (3.18)
iHdi = [1ds=1,

Because no conduction current flows through 3.
e J=0

in both {a) and (b), same clesed path is used, but equations 3.17 and 3,18
are different,

This 12 an incensistency of Ampere's circuit law.

Thiz inconsistency of Ampere’s circuit law in both cases (1) and (2) can
be resolved by including displacement current in Ampere's circuit law,

Substituting n (3,19}, we get,

A =g 22 (3.21)

alt

This iz the Maxwell equation (based on ampere’s circult Law) for tiem
varying fields.

In equation (3.21),
J,; = Displacement current density
J = Conduction current density,

The conduction current density J invalves flow of charges. The
displacement current density J, dees not involve flow of charges.
Dizplacement current,

I, = jJ.a',ds = f%.m- (3.22)
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Displacement Current Density:
The equation
Aw = I For static EM fields is modified to Medified to

AxH =T +J, (3.19)
To make the Ampere’s law compatible for varying felds.
Now, applying divergence, we get
AAxH)=0=AJ+AJ,
de,

,-Jﬁ__lr = -.I"!L.F -——
: et

From Gauss Law, we have

e =AY

Therefore,

d(AD) 5 dD

A, A
ot af
L (3.20)

at
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Boundary Condition for Magnetic Fields:

Similar to the boundary conditions in the electro static fields, here we will consider the behavior

of B and H at the interface of two different media. In particular, we determine how the
tangential and normal components of magnetic fields behave at the boundary of two regions
having different permeabilities.

The figure 4.9 shows the interface between two media having permeabities A and #2, ax being
the normal vector from medium 2 to medium 1.

Medium | B,

E."?

=7
_—

EJM
Lz Medium 2

Figure 4.9: Interface between two magnetic media

—

o determine the condition for the normal component of the flux density vector &, we consider a

small pill box P with vanishingly small thickness h and having an elementary area &5 for the
faces. Over the pill box, we can write

$ Bds=0
S —————————_ (4.36)
Since h --> 0, we can neglect the flux through the sidewall of the pill box.
' - ™ + - = =
: 'LsBldSl Lsﬁ’z.dﬂ'z ¢ 4.37)
I ds[—ﬁx]
dSy=dSangnd N S (4.38)

LS B dS~ LS B, dS=0

where
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Since &4 js small, we can write

(B, — B, )AS =0

or, BTEB e, (4.40)

That is, the normal component of the magnetic flux density vector is continuous across the
interface.

In vector form,

—

;x.(§1_32)=0

To determine the condition for the tangential component for the magnetic field, we consider a
closed path C as shown in figure 4.8. By applying Ampere's law we can write

Since h -->0

e Y

We have shown in figure 4.8, a set of three unit vectors @=, @¢ and “# such that they

fal a2 ey £ fal

satisfy @ = @7 du (R.H. rule). Here @{ is tangential to the interface and %~ is the vector
perpendicular to the surface enclosed by C at the interface.

—_—

cPH..:x‘f= 7

if Js = 0, the tangential magnetic field is also continuous. If one of the medium is a perfect
conductor Js exists on the surface of the perfect conductor.

In vector form we can write,

Therefore,
C;xx (El - Ez) = js
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Solved problems:
Problem1:
(a) In a cylindrical conductor to the region 0.01 =r=0.02,0<z <1 m and

the current density is given by,
J =10e-1%r g, A/m?

Find the total current crossing the extential of this region with
@ = constant plane.

(b) Find the total current in a circular conductor of 4 mm radius if the

4
current density varies accordingto J = M A/m?2,
r

Solution

(a) Total current in the wire is given as,
0.02

I'= IJ ds = I j [IO("‘"”u ][nhd‘.uo]

re0.01 2«0

0.02 ]
j' 10re=1907 =

r=0.012=0

0.02
10 J re-'%rdy
r=0.01

1007002 002 00,
I1=10| = [ - | S—ar
=100 ki ~100

r=0.01

1 e~100r .02
=10| =———(0.02¢-2 - 0.0l¢"!) + ———

Il

100 ~100x 100}, .,

=2x103e!
=310"3¢2

(b) Total current is given as,
2x O Dﬂ-‘l

I = des_j ]'—nrmf.p 27 % 104 J’ dr = 27 % 104 % 0.004 = 807 A
»r

=l F= r=i
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Problem2:

IfJ = %(Zcose d, +sin@ 4,) A/m?, calculate the current passing through
r

(a) A hemispherical shell of 20 cm radius
(b) A spherical shell of 10 cm radius

Solution

Total currentis givenas [ = Jj.(lf
Here, dS = r2sin@d¢da,

(a) Total current passing through a hemispherical shell of 20 cm radius
is,

% 2r l
I= [ [ =(2c0s0d, +sin6 G).(1sin0d9doa,)
9=0¢=""' 02

" >
7 ‘jf 1 -
= —12:;():5 B sin @ B

GmOgmi

-2

=4
=2m = = f sin@d(sin @)
¥ pai

i), 2

4| sin? @ !
=—] —— =10r=31.42 A
ﬂ-z[ 2 1: *

(b) Total current passing through a spherical shell of 10 em radius is,
2

F 4
! . )
I= [ | S(2c0s0d, +5in8 6,).(r2sin@dpded,)
, p=
b D e

il |

T Im

= J- J%Ecus&:‘zﬁinﬂdﬁds

Ot gmi

i, |

2 4
=2mx= j sin@d(sin )

r

8=0 r=l.]

_4n[sin’0
0.1l 2 |,

=0
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Problem3:

For the current density, J = 10zsin? ¢ 4. A/m?, find the current through the
cylindrical surface ofr=2,1=z=5m.

Solution
Total current passing through the cylindrical surface is,

z=lg=0 @=0

. 5w 2P %
1=[Jds= | juuzsinzgpcs,].mmdz&,}[ =lﬂr[%I | sin gdg

rm2

=10 zx?x? 2407 =754 A

Problem4:

Determine the current density function J associated with the magnetic
field defined by

(a) H =3i +7j +2xk A/m (Cartesian)

(b) H = 6ra, +2ra, +5a, A/m (Cylindrical)

(c) H =2pa, +3dy +cos® 4, A/m (Spherical)

(@) H=3+7j+2xk

By Ampere’s law in Cartesian coordinates,

a, a, a,

- - |9 9 9
J=VxH=|— — —=—2a A/m?
dx dy 0z
3 7 2x

(b) By Ampere’s law in cylindrical coordinates,
1

—d, d, d,

-
- ~ d o d
F=Vxfi=|=— = =
* or 29 0z

H, rH, H.

|:I H.  OH, :| [aH', DI ] | [a-:rff,} IH
=|= = .+ - = e, + N
- -

E' oz dz r dr i
|:}}i 5}— {21 }]u [Tﬁfﬁrl - .}i(ﬁ}}a [l][a%(iQ! )= %[ﬁfl]ﬂ
:( ]X4ru'
=4aq, A/m?

(c) f = 2pa, + i, +cosO a, 84
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By Ampere's law in spherical coordinates,

dp G 9%

- - 1 d d d

=V = . — — —

SVl =ty 6
H, pHy psin8H,

ORI A RV E) RIS O §
pg.ne[aaw”““m %]“F*[p][sma a9 ap Lo %

(2 d 11 2 2
E - — —
psmﬂ[aﬂlms sin@) - 3‘¢{3}] [ ]|: 93'@{ Pl 3 {pcusﬂ}:|

173 d
—| —(p3)=—(2
[a{p}af,ﬂ}]

= [ccszﬂ]ﬂ —lcosﬂ'%-l-Ea Alm?
p\ siné P P

Problem5:

An infinitely long conductor of radius a is placed such that its axis is
along the z-axis. The vector magnetic potential, due to a direct current
lp flowing along a. in the conductor is given by

]

i '4—’z'—"[.lo (.\‘2 5. _\‘2)(;: Wb/m
a-

Find the corresponding f7 . Also confirm the result using Ampere's law.

Solution

The magnetic flux density is given as,

a ay a,
= - |0 9 ) < s
B'—'VXA:— e _— = - 0 - Xd..
ox dy 0z 2na? x=Xdy)
0 )
So, the magnetic field intensity is given as,
ﬁ=£=——l—(m —m )
Hy 2na’
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We calculate the closed line integral of this field as follows.

?Fl.(/i =- P (ﬁ( va, — xa,).(adga,) = — 2;": ?mw( ya, —xa,)(a,)
= - ¢ad¢( ya,— xa,)(-singa, + cosga,)
2ra* |
“—Pad¢(-ysing — xcos )
2ra
=—> 4)ad¢(asin3 o+ acos® @) fox=rcos¢ and y=rsingd}
2ra’ i
de(sin® ¢ + cos? @)
L
_1
-t 2 fd¢ = 2” 0 xox=1,

L

Since é”-‘” =1, Ampere’s law is verified.
L

Problem6:
Obtain an expression for the self-inductance of a toroid of circular

section with ‘N’ closely spaced tumns.

Solution

Let,
r = Mean radius of the toroid
N = Number of turns
S = Radius of the coil

We have the magnetic field,

=N
2rr
. . NI NI _,
total flux linkage per turnis, 9 = BA=pH4d = pz— s = ”2_ 5?2
»
Hence, the self-inductance of the toroid is [ = ﬂ = ¥
-
L - L[J"‘l';ﬁ"
2r
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Problem?7:
The circular loop conductor having a radius of 0.16 mis placed in the
xy plane. This loop consists of a resistance of 20 Q as shown in Fig. If the
magnetic flux density is
B=05sinl10%d. T
Find the current flowing through the loop.

Z
A

Circular loop conductor

Solution

Here since the loop is stationary and the magnetic field is time

only the transformer emf is induced. :
varying,
Transformer emf induced is,

YR .
V= —.[SJE.(/S - -[j = (0.55in10%d,).(rdr dod)
0.15 22
=-0.5x103 cos 101 j j rdrd¢
ra() ¢=l

015
=-05x2rx10? cosloll[%l

=-10371cosl0Ptx0.01125
=-3534cosl0t V
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Problems: -
(a) In free space, D = D, sin(@t + Bz)d,. Using Maxwell’s equations, show
that

E miut_} Dﬂr

———sin(wr + ﬁz)ei}.

(b) In free space, B = Bmeifff’”ﬁflﬁr Using Maxwell’s equations, show that

EF= _w_Bf" ej[mwﬁ:jdr

Solution

(a) By Maxwell’s equation,

. s - D
VxE= _98 and D=¢g,E or, E=— forfreespace
ot &
= d d d )
-g—f=?xf= ax W dz|= ': i[sm{nﬂ+ﬁz] _=H£”;ﬁcus{mr+ﬁz]é}.
—sin(wt+pz) 0 0
I
=__D, DB .
B=- cos(@f + fz)d dt =——"=sin(wr + Bz)d,
€ J e, ’
or,

Also, for free space,

o_ 1 LE‘”‘{ET
B HyEy & !_JB

B= _Msin{aﬂ +Bz)d, = —%‘B X pﬂ(%] sin(@f + fz)d, = -W#%sinim! +Bz)a,

g,

__ op,D,,

vall

sin(@f + fz)a,
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(b) By Maxwell’s equation,

- 9B 9, .
VX E=——=——B eil®+p)g
a  ar " ’

i, d, a

Jd d o .
o,|— — —|=-B, jweil®+B)g

dx dv oz mJ ’

E, E, E
Comparing both sides, we get,

z x ) - :

JE, =—B, jwel(®+pz) ( E. is not a function of .r]

dz
, R S Bw . .
E_r = j=ij&}eﬂ.ﬁ”+ﬁ~'.idz — —B,"__.-'Eﬂ_—ﬁeﬂ“”*ﬁJ — ef(or+pz)
| J

E

B ]
— M o jlet+fz) a,
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UNIT — 111
EM Wave Characteristics - I:

Wave Equations for Conducting and Perfect Dielectric Media
Uniform Plane Waves - Definition, Relation between E & H
Wave Propagation in Lossless and Conducting Media

Wave Propagation in Good Conductors and Good Dielectrics

YV V. V VYV VY

Hlustrative Problems.

EM Wave Characteristics - 1:

» Reflection and Refraction of Plane Waves - Normal for both perfect Conductor and

Perfect dielectric

Brewster Angle

Critical Angle

Total Internal Reflection
Surface Impedance
Poynting Vector

Poynting Theorem

YV V V V V V V

IHlustrative Problems.
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Wave equations:
The Maxwell's equations in the differential form are

WeB=1
Let us consider a source free uniform medium having dielectric constant &, magnetic
permeability # and conductivity & . The above set of equations can be written as

VX§=J§+€% (5.29(a))
=~ 38

TxE=u— (5.29(8))

V-E=0 (529(c))

v-H=0 (5.29(d))

Using the vector identity ,
VRV xA =v-(v-ﬁ) -4
We can write from 2
TXVXE =V [v-_g’) -V'E

aH
= =% ® -
“ o
Substituting ¥ *# from 1
= - af = dE
V- (VE)-VE=-u_|cE+e_
3 a

But in source free( ' £ = 0) medium (eqg3)
= A
ViR =po—+ ug—
e TR
In the same manner for equation egn 1
UxVxH =V (V H)-V'H

Since ¥' =0 from eqn 4, we can write
— aH aH
ViH =,u<:r[—] + ue

3
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These two equations

v ol ],a[

are known as wave equatlons.

i

A uniform plane wave is a particular solution of Maxwell's equation assuming electric

Uniform plane waves:

field (and magnetic field) has same magnitude and phase in infinite planes perpendicular to the
direction of propagation. It may be noted that in the strict sense a uniform plane wave doesn't
exist in practice as creation of such waves are possible with sources of infinite extent. However,
at large distances from the source, the wave front or the surface of the constant phase becomes
almost spherical and a small portion of this large sphere can be considered to plane. The
characteristics of plane waves are simple and useful for studying many practical scenarios

Let us consider a plane wave which has only Ex component and propagating along z .

Since the plane wave will have no variation along the plane perpendicular to z

oF, _OE, _
ie., xyplane, % & . The Helmholtz's equation reduces to,
d*E.
= +%'E, =0

The solution to this equation can be written as
E(2)=E @)+ E (2)
= Bte™® 1+ B pl®

By & By are the amplitude constants (can be determined from boundary conditions).

In the time domain, £x -8 = Re(&,(2)e™)

£y(z,8) =B cos(at —kz)+ B, cos{ @t +iz)

. -
assuming By & B, are real constants.

Here, £x (@:2) = By cos(@ = B2) anracants the forward traveling wave. The plot of £z (Z+£)
for several values of t is shown in the Figure below

92

EMTL



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT. OF ECE

Eﬂ*" —_— —_— —_—
b
é =
e
i

Figure : Plane wave traveling in the + z direction
As can be seen from the figure, at successive times, the wave travels in the +z direction.
If we fix our attention on a particular point or phase on the wave (as shown by the dot) i.e. ,
@t =Kz = constant
Then we see that as t is increased to ¢+ £&¢ | z also should increase to Z *£2 so that
Gt + MY —k(z +Az) = constant = @ — Sz
Or, @it =khz
M @

Or, & i k

When &t — 0 1

fz  dz

limm — = —
we write ¥7% & df = phase velocity “*.

v = —

i

If the medium in which the wave is propagating is free space i.e., £~ o« # = £
a 1
vy = =

Where 'C' is the speed of light. That is plane EM wave travels in free space with the speed of
light.

The wavelength 4 is defined as the distance between two successive maxima (or minima or
any other reference points).

-C

o (@i)- [@t-k(z+2)] =27

or, ki=1x
1-27

or, k 03
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i 1= 27TV, _Ve
Substituting Ve, ey J
or, /?'f=v.?

Thus wavelength “Aalso represents the distance covered in one oscillation of the wave.

Similarly, £ (z,6) = By cos(at +kz)

represents a plane wave traveling in the -z direction.
The associated magnetic field can be found as follows:
From (6.4),

By (z) = B'e ™ a,

— 1

H=-—VxE
jau
ar  dy s
1
———| 0 0 —
s Bz
E™™ 0 0
iEJ+E_JIan,
_ ay
ELE_J:&&}I = HD+E_ﬁxay
= %
_au_ au _ fu
" Tajur Ve
where HE is the intrinsic  impedance of the  medium.

When the wave travels in free space

Bo = [EL 21207 = 37782
i is the intrinsic impedance of the free space.

In the time domain,

+

E+(z,.ﬁ) = &;;E'?cos[mt - ﬁz:l

Which represents the magnetic field of the wave traveling in the +z direction.
For the negative traveling wave,

E_(z,.t} =-a, E'?Jr Cos [a:rz + ﬁz:l

For the plane waves described, both the E & H fields are perpendicular to the direction of
propagation, and these waves are called TEM (transverse electromagnetic) waves.

The E & H field components of a TEM wave is shown in Fig below 94
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¥y

Figure : E & H fields of a particular plane wave at time t.

Poynting Vector and Power Flow in Electromagnetic Fields:

Electromagnetic waves can transport energy from one point to another point. The electric and
magnetic field intensities asscociated with a travelling electromagnetic wave can be related to the
rate of such energy transfer.

Let us consider Maxwell's Curl Equations:

TXE=—E

dé
oxF=F+ 22
¢

Using vector identity
v. [EXE) ~HVXE-EVxH

the above curl equations we can write

v (Exd)=-E 25|72
or, v (B7) - T L 57520 o

In simple medium where = #and & are constant, we can write

598 _3a(1 Hﬂ

I
~aD _af1

2
a el 2 ] and £ =cE
~ = a1 1
CV(ExH)=-—| e B +_uH’ |- 0B
al2 2

Applying Divergence theorem we can write, 95
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(ExH)as O e Lt ar - (omtar
a4l 2 2

1

BEJ[%E E? = Hﬂ]drf
¢ represents the rate of change of energy stored in the electric
Jgﬁﬂdff

The term

and magnetic fields and the term represents the power dissipation within the volume.
Hence right hand side of the equation (6.36) represents the total decrease in power within the
volume under consideration.

EF)aS-gPas
The left hand side of equation (6.36) can be written as where £ =E£xH
(W/mt?) is called the Poynting vector and it represents the power density vector associated with
the electromagnetic field. The integration of the Poynting vector over any closed surface gives
the net power flowing out of the surface. Equation (6.36) is referred to as Poynting theorem and

it states that the net power flowing out of a given volume is equal to the time rate of decrease in
the energy stored within the volume minus the conduction losses.

Poynting vector for the time harmonic case:

For time harmonic case, the time variation is of the form é‘m, and we have seen that

instantaneous value of a quantity is the real part of the product of a phasor quantity and ™ when
cos & js used as reference. For example, if we consider the phasor

E[z) = .:z: E,(z)= c:t: B gmi8s
then we can write the instanteneous field as
E[z,f,:l =Fe [E[z) é"i""’t] = By cos(at - Sz) c;;

when Eo is real.
Let us consider two instanteneous quantities A and B such that

A=Fe (ﬂgj‘"t) = |A||:os (@t + &)
B =Re(Be™ | =|B|cos(at + 8)
where A and B are the phasor quantities.
A =]Ale™
ie,
B=|Ble”
Therefore,
AR = |A|cos|{mﬁ + .::E:l|5’|cos [mﬁ + ,3:]

- %|ﬂ||3|[cos[&— 8)+ cos (20t +a+ )]
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27T
T=22
Since A and B are periodic with period & | the time average value of the product form AB,
denoted by AZ can be written as
— 1f
Al =— J‘ ABdt
T
— 1
AB =—|A||Bleos[a- 8
2 [A1Blees( e 4)

Further, considering the phasor quantities A and B, we find that
45" = |4lo’ |5]e" = 4] 3le"

Re(AB") =|4||B|cos( @~ &)

and , Where * denotes complex conjugate.

— 1 .
..ﬂ3=§Re[AB)

The poynting vector £ = £/ can be expressed as
Pea,(BH,-EH ) va (BH, - EH,) *a,(EH, -EH,)

If we consider a plane electromagnetic wave propagating in +z direction and has only E

component, from (6.42) we can write:
Be=E, (z.)H, (z.8)a,
Using (6)

Pray = %Re [Ex (z) H; [z)a:,]

Pro - %Re[ﬁx (2)xH, (2))

Y

H(z) = H,(z)a, , for the plane wave under consideration.

Y

where £@) = &£(2)a, 5nq

For a general case, we can write
ﬁﬂ=%R%§x§j

We can define a complex Poynting vector

5-17F
2

. . . . . E::m' =Fe (E)
and time average of the instantaneous Poynting vector is given by o7

EMTL



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT. OF ECE

Polarization of plane wave:

The polarization of a plane wave can be defined as the orientation of the electric field
vector as a function of time at a fixed point in space. For an electromagnetic wave, the
specification of the orientation of the electric field is sufficient as the magnetic field components
are related to electric field vector by the Maxwell's equations.

Let us consider a plane wave travelling in the +z direction. The wave has both Ex and Ey
components.

E-= [ax B, ta, B, ]é'_‘wx
The corresponding magnetic fields are given by,
— 1~ =

H=—gxE
7

1 Fan Fan Fan _Jl;ﬁ‘x
= Easx @, Eﬂx + a, Eﬂy ]

oy "x
7

Depending upon the values of Eqx and Eoy We can have several possibilities:

1 . . .
= —[—E Y, +Emax]é'_mx

1. If Eoy = 0, then the wave is linearly polarised in the x-direction.
2. If Eoy = 0, then the wave is linearly polarised in the y-direction.
3. If Eox and Eoy are both real (or complex with equal phase), once again we get a linearly

polarised wave with the axis of polarisation inclined at an angle E,

axis. This is shown in figl below

* , with respect to the x-

¥ .

Eoy

Figl : Linear Polarisation

4. If Eox and Eoy are complex with different phase angles, £ will not point to a single spatial
direction. This is explained as follows:

Lot Zor = 1Bl

, |2, "

Then,

E (z.t) = Re [|Em|eﬁe-*ﬁxe-?“] = |E, |cos(at — Bz +a) 98
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E A=E BB g dt mif +2
y@8)= E[| Byle?e e ] |Byleos (@ = pze) )
b= o
To keep the things simple, let us consider a =0 and 2 . Further, let us study the nature of the

electric field on the z =0 plain.
From equation (2) we find that,
E (0,£) =|E,|cos ax

E (o8 = cos[aﬂi+j—;] =&, [—sm&.‘rﬁ:l
E ‘(& i
x[o,ﬁ) 'v[G’ﬁ) =cos @ +sin® @ =1
[ 12, |

and the electric field vector at z = 0 can be written as

| |COS fI -

oy sin[mfjg

Efo.) for various values of t is hown in figure 2

Assuming |E""| 7 1B

t= 372w

Eox

= mwo =

Eay

t=m2m
Figure 2 : Plot of E(o,t)

From equation (6.47) and figure (6.5) we observe that the tip of the arrow representing electric
field vector traces gn ellipse and the field is said to be elliptically polarised.
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Figure 3: Polarisation ellipse

The polarisation ellipse shown in figure 3 is defined by its axial ratio(M/N, the ratio of

semimajor to semiminor axis), tilt angle ¥ (orientation with respect to xaxis) and sense of
rotation(i.e., CW or CCW). Linear polarisation can be treated as a special case of elliptical
polarisation, for which the axial ratio is infinite.

In our example, if | ""l @1, from equation the tip of the arrow representing electric field
vector traces out a circle. Such a case is referred to as Circular Polarisation. For circular

polarisation the axial ratio is unity

V //———-5\\.

]'.. X
.\

AN

S

Figure 5: Circular Polarisation (RHCP)

Further, the circular polarisation is aside to be right handed circular polarisation (RHCP) if the
electric field vector rotates in the direction of the fingers of the right hand when the thumb points
in the direction of propagation-(same and CCW). If the electric field vector rotates in the
opposite direction, the polarisation is asid to be left hand circular polarisation (LHCP) (same as

CW).In AM radio broadcast, the radiated electromagnetic wave is linearly polarised with the &
field vertical to the ground( vertical polarisation) where as TV signals are horizontally polarised
waves. FM broadcast is usually carried out using circularly polarised waves.In radio
communication, different information signals can be transmitted at the same frequency at
orthogonal polarisation ( one signal as vertically polarised other horizontally polarised or one as
RHCP while the other as LHCP) to increase capacity. Otherwise, same signal can be transmitted
at orthogonal polarisation to obtain diversity gain to improve reliability of transmisl%ign.
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Behaviour of Plane waves at the inteface of two media:

We have considered the propagation of uniform plane waves in an unbounded
homogeneous medium. In practice, the wave will propagate in bounded regions where several
values of £ will be present. When plane wave travelling in one medium meets a different
medium, it is partly reflected and partly transmitted. In this section, we consider wave reflection
and transmission at planar boundary between two media.

A

Medium 1 Medium 2
B, A3 o, e,

w®
E E
-
‘fxr H, [
5
i——' ~
H,

L]

Fig 6 : Normal Incidence at a plane boundary
Casel: Let z = 0 plane represent the interface between two media. Medium 1 is characterised by

I[El”'s"rl"::rljand medium 2 is characterized by CHENSY .Let the subscripts 'i' denotes incident,
r' denotes reflected and 't denotes transmitted field components respectively.
The incident wave is assumed to be a plane wave polarized along x and travelling in medium 1

Y

along “ direction. From equation (6.24) we can write

Y

B [z:l =B e a,

.................. (1)
Hi(z) = 0B, (2) = 22e ay
& T, (2)
_ ) Jag
where 11 =\/jm"r’{1 (o +jes) and " atjes

Because of the presence of the second medium at z =0, the incident wave will undergo partial

Y

reflection and partial transmission. The reflected wave will travel along “ in medium 1.
The reflected field components are:

~ 101
The transmitted wave will travel in medium 2 along “ for which the field components are
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Bt = Bt e, ©)
Hy = E_zﬂé—;rg dy
TS (6)
n, = J @
_ . . a - .
where ¥ = \/J'*‘*’-Wz (o +j@s) and a, + jae,
In medium 1,

El =§;‘ +Erand El =§i +§r
and in medium 2,
Eﬂ = E:and Ez = E:r

Applying boundary conditions at the interface z =

0, i.e., continuity of tangential field

components and noting that incident, reflected and transmitted field components are tangential at

the boundary, we can write
E:(0)+ B (0)= E: {0)

Hi(0)+Hy (0) = H:(0)

&

From equation 3to 6 we get,

E;'::' + En:l = E:r::' (7)
E:ia _ Er::l — E:r::l

R B T (8)
Eliminating E ,

o _Ew V(g oag)

oo T

gfl-1)og (1.1
or, o o
or, B, =1E,
_TaTh
P2t o, (8)

is called the reflection coefficient.

From equation (8), we can write
1+ R
2

2E, = B,
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is called the transmission coefficient.
We observe that,

T = 21, _ Myt Ty —1+T
Tt Mt (10)

The following may be noted
(i) both ©and T are dimensionless and may be complex

Y s
(i 0<|r <1
Let us now consider specific cases:

Case I: Normal incidence on a plane conducting boundary

The medium 1 is perfect dielectric (41=0) and medium 2 is perfectly conducting (02 =) :

S s ﬁ
S
7y =0

W= Jiew) jee))

=Jaji e =8
From (9) and (10)
T = -1
and T =0

Hence the wave is not transmitted to medium 2, it gets reflected entirely from the interface to the
medium 1.

Y

S Ei(z) = g iPE c::;— B o' g =-2iB sin ,ﬁlz%

e
2 . Ei(z,t)=Re [—EJE',!-‘, sifl ﬁzej"”]ax =2F, sin Szsinata,

Proceeding in the same manner for the magnetic field in region 1, we can show that,

Ell:Z,f:l = a:, 25 cos fz cos a
L e, (12)
The wave in medium 1 thus becomes a standing wave due to the super position of a forward

travelling wave and a backward travelling wave. For a given ' t, both Ziand “ivary

sinusoidally with distance measured from z = 0. This is shown in figure 6.9. 103
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LY
wt = wl = gl

fa) E; versus g o= o
eyt
concctor
wl = o

fb) Hy versus 2 wh = a2

Figure 7: Generation of standing wave
Zeroes of E1(z,t) and Maxima of Hi(z,t).
Maxima of E1(z,t) and zeroes of Hi(z,t).

b

voccurat Bz =-nm orz= -nE

socour at Az =—|:2?z+1:lj—; orz=-{2n+1)

N XY

L u=012 0

F.

Case2: Normal incidence on a plane dielectric boundary : If the medium 2 is not a perfect

conductor (i.e. i *) partial reflection will result. There will be a reflected wave in the

medium 1 and a transmitted wave in the medium 2.Because of the reflected wave, standing wave
is formed in medium 1.

From equation (10) and equation (13) we can write

-

E E, (e_"x + l"e"x)czx

Let us consider the scenario when both the media are dissipation less i.e. perfect dielectrics (
a =0, a,= D)

W= JaafiE =08 = L
8
¥y = J@ by = 5 My = H
E2 e, (15)

In this case both #1and 7 become real numbers.
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—

H= axﬁ'&, (é,—.;-;s.x + ré,.i"p‘.x)
= &xﬁ',-‘, ([1 + T +T (E.i"ﬁux - é.—.r;ﬂ.x))
= &, (T 7% +T(2sin 2))

From (6.61), we can see that, in medium 1 we have a traveling wave component with amplitude
TEio and a standing wave component with amplitude 2JEi,. The location of the maximum and the
minimum of the electric and magnetic field components in the medium 1from the interface can
be found as follows. The electric field in medium 1 can be written as

B = ay B (14Te"%)

1f 72 > Tje >0
The maximum value of the electric field is

B2 =&,(+T)

.................. (18)
and this occurs when
2Bz, = —2nm
R Him M
S A = = /’il
8 iy o
or Al N=0,1,23 ... (19)
)
The minimum value of | 1| is
E| =E (1-T
Bl -&0-0) (20)
And this occurs when
282 = (20 + )7
Zon _[2?2 +1)£
or 4., n=0,1,2 3, (21)

For 7 < ie. I'<0

The maximum value of | 1||s Z, (1 1—:'whlch occurs at the zmin locations and the minimum

value of |§l|is E,(1+T)

(6.66).

which occurs at zmax locations as given by the equations (6.64) and

[l

From our discussions so far we observe that | Imn can be written as

| _ 1+
o= =
Bl 1717

................. (22) 105
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The quantity S is called as the standing wave ratio.
o< <1
As

From (6.62), we can write the expression for the magnetic field in medium 1 as

the range of S is given by 1 =5 £

—_—

Hi=ay E_&:E—mx (1 o Wk
L (23)

|

E
From (6.68) we find that will be maximum at locations where | 1|is minimum and vice

versa.
In medium 2, the transmitted wave propagates in the + z direction.

Oblique Incidence of EM wave at an interface: So far we have discuss the case of normal
incidence where electromagnetic wave traveling in a lossless medium impinges normally at the
interface of a second medium. In this section we shall consider the case of oblique incidence. As
before, we consider two cases

i.When the second medium is a perfect conductor.
i.When the second medium is a perfect dielectric.

A plane incidence is defined as the plane containing the vector indicating the direction of
propagation of the incident wave and normal to the interface. We study two specific cases when

the incident electric field Ziis perpendicular to the plane of incidence (perpendicular

polarization) and Ziis parallel to the plane of incidence (parallel polarization). For a general
case, the incident wave may have arbitrary polarization but the same can be expressed as a linear
combination of these two individual cases.
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Critical angle:

In geometric optics, at a refractive boundary, the smallest angle of incidence at which total
internal reflection occurs. The critical angle is given by

Where Oc is the critical angle, n 1 is the refractive index of the less dense medium, and n 7 is the
refractive index of the denser medium.

Angle of incidence: The angle between an incident ray and the normal to a reflecting or
refracting surface

Air
i Critical angle Total lntgrnal
8, reflection
n2 | .
:
nl !
|
Water :
1
Refraction of light at the interface between two media, including total internal reflection. &
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TRANSMISSION LINE THEORY

1.1. INTRODUCTION

The transfer of energy from one point to another takes place through either wave guides or
transmission lines. Transmission lines always consist of atleast two separate conductors
between which a voltage can exist, but the wave guides involve only one conductor; for
example, a hollow rectangular or circular waveguide within which the wave propagates.
Transmission lines are a means of conveying power from one point to another. There are two
types of commonly used transmission lines.

1. Parallel wire (balanced) line
2. Coaxial (unbalanced) line

Parallel wire line : It is a common form of transmission line known as open wire line as
shown in Fig. 1.1(a). It is employed where balanced properties are required. Telephone lines,
line connecting between folded dipole antenna and TV receiver are good examples of parallel
or balanced or open wire line. The parallel wire lines are not used for microwave
transmission.

Coaxial line : Coaxial lines consist of inner and outer conductor spacers of dielectric as
shown in Fig. 1.1(5). It is used when unbalanced properties are needed, as in the
imterconnection of a broadcast transmitter to its grounded antenna. It is employed at UHF and
microwave frequencies.

Quter conducter
Inner conductor

Quter casing
/ Conducters /
............................. / Dielectric

Quter casing

(a) Parallel wire (balanced) line (b) Coaxial (unbalanced) line
Fig. 1.1. Transmission lines

1.2. TRANSMISSION LINE AS CASCADED T SECTIONS

To study the behaviour of transmission line, a transmission can be considered to be made
up of a number of identical symmetrical T sections connected in series as in Fig.1.2. If the
last section is terminated with its characteristic impedance, the input impedémnce at the first

section is Z,. Each section is terminated by the input impedance of the following section.
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Fig. 1.2. A line of cascaded T sections

The characteristic impedance for a T section is

Zl
Zor = \[ 2122\ 1+ 77

If *n” number of T sections are cascaded and if the sending and receiving currents are Iq

and I respectively, then
_ ny
where v is the propagation constant for one T section.

v = atip

2 Z Z
g g o ot _._1 4 1 1
oF = g~ | g \/22L1+423)

One T section representing an incremental length Ax of the line has a series impedance

Z; =Z Ax and shunt impedance Z, = . The characteristic impedance of any small T

1
Y Ax
section is that of the line as a whole.

A 7 Z,

Substituting the values of Z, and Z,,

7 - Z Ax [1+ZAxYAx)
0 Y Ax ' 4

_ \/%(HJ——HYZ‘MZ)

If Ax tends to zero, then Z, becomes,

Zy = ’\/g : 110
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1
Z, Z, Z, Z, 2
=i+ | = l +
Z, 47, Z, 47,

By the binomial theorem,

Zy i Z, \ Z, 1+_1_(ZI 1 Zl\z+ |
7 1Z 4 ~ Zs 2447, )78 422J """

Substituting this value in e’ equation,

T o= 1+Zl + l 1+
& T STz, 7 4Z,
Z

I
Y Ax

When applied to the incremental length of line Ax, then Z, = Z Ax, Z, = and

propagation constant becomes y Ax,

gl 1 , 1
e’ = 1++ZY Ax +3 G ZY 2 (ax)? +3 VZY ¥ (Ax)P-128(\ ZY ) (Ax)?
Series expansion for an exponential ¢7* is
] 2 3 (Ax)?
25w g s PUER RS,

Equating the above two expressions,

(VZY ) (Ax) +(\/ ZY P (Axy |
2 8

Y Ax+

12 (Ax)z ]{3 (Axf’
5 + 5 g

e YRR

PAx P (Ax)
+ ) -+ 6 i

If Ax tends to zero then,

o AR, GEpane,

Y = \f LY.
This is the value of propagation constant in terms of Z and Y.

Since each conductor of transmission line has a certain length and diameter, it must have
resistance and inductance; moreover the two conductors are separated by a dielectric medium
(say, air), therefore there must be a capacitance between them. This dielectric between the
conducting wires may not be perfect, and hence a leakage current will flow creating leakage
(shunt) capacitance between the conductors. These four parameters resistandé!(R), inductance

(L), capacitance (C) and conductance (G), all distributed along the lines are known as
EMTL
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distributed parameters. The equivalent circuit diagram of transmission line is shown in
Fig. 1.3.

L R L
Ik AAA- EILR

R B
AAAA AAAA
G% == G }C G%

L
—

1L
i
O

Fig. 1.3. Equivalent circuit diagram of transmission line

The four line parameters resistance (R), inductance (L), capacitance (C) and conductance
(G) are also known as primary constants of the transmission line,

Resistance (R) is defined as the loop resistance per unit length of the transmission line. It
is measured in ohms/km.

Inductance (L) is defined as the loop inductance per unit length of the transmissicn line. It
is measured in Henries/km.

Capacitance (C) is defined as the shunt capacitance per unit length between the two
transmission lines, It is measured in Farads/km. ’

Conductance (G) is defined as the shunt conductance per unit length between the two
transmission lines. It is measured in mhos/km.

1.3. TRANSMISSION LINE EQUATION Ledl .
Transmission line is a conductive method L & L B

of guiding electrical energy from one place to e MM e T T el
another. A uniform transmission line can be f
considered to be made up of an infinite VgV & _J_ c v
number of T sections, each of infinitesimal __]—

size dx. The equivalent circuit of T section of | 1
transmission line is shown in Fig. 1.4, L_ " ©

Fig. 1.4. Equivalent circuit of T section of Transmission line

The parameters R, L, G and C are distributed throughout the transmission line. The
constants of an incremental length dx of a line are shown in Fig. 1.4. The series impedance
per unit length and shunt admittance per unit length are given by

Z = R+joL
Y G+joC 112
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Consider a T section of transmission line of length dx. Let V + dV be the voltage and
I+ d1 be the current at one end of T section. Let V be the voltage and I be the current at the
other end of this section.

The series impedance of a small section dx is (R + jL®) ¢x. The shunt admittance of this
section dx is (G + jCw) dx.

The voltage drop across the series impedance of T sections ie., the potential difference
between the two ends of T section is

V+dV-V = I(R+jol)dx
dV = 1(R+joL)dx

dv .
— = IR +jol) L. (L)
dv |
— =1z

The current difference between the two ends of T section is due to the voltage drop across
the shunt admittance.

I+di-1 = V(G+jeC)dx
dl = V(G+joC)dx

d1 _
7 = V(G+jol) skl
dl

— = VY

§_.%

Differentiating equation (1.1) w.r.t. °x’,

d*V , dl
g2 = (R +joL) 7

Substituting the value of 57 in the above equation

d2V _ L
e = (R+joL)(G+jaC)V .. (1.3)
Differentiating equation (1.2) w.r.t. °x’

d?] _ dV
d_xz = (G+jol) g

L dVv . :
Substituting the value of . 1nthe above equation

d?1 o )
25 = R+jeL) (G +jeO) I (14

But propagation constant is given by 113

i v = VJ R+joL)(G+joC) =+/ZY




* Malla reddy college of engineering and technology DEPT.OF ECE

Substituting the value of y in equation (1.3) and (1.4),

d*V
then Tz = Y2V

The solutions of the above linear differential equations are
V= Aer+B en .. (1.5)
[ = Cer+De ¥ sk :5)
where A,'B, C and D are arbitrary constants.

Differentiating the equation (1.5), w.rt. °x’

dVv
T Aye*—Bye ¥
dV
But 7= = IZ
IZ = Aye*—Bye ¥

= ANZY NEYx _pZy & VEVx [y =AY ]
Y % Y
[ = A‘\/Tz NZYx _p 7 e V2V (LD

Similarly, differentiating the equation (1.6) w.r.t. ‘x’

dl
5 = Cyer-Dyery
dl

VY = Cyer-Dye ¥

= CAZY NZ¥* _pyZY VY=

? lv zZ _
vV = C\/; e\/_x—D‘\/—; e VZY x el T8)

Since the distance x is measured from the receiving end of the transmission line,

x =0, % Ll
¥ o= Ve 114
Vi = RRZz

EMTL



Malla reddy college of engineering and technology

where I is the current in the receiving end of line

Vp is the voltage across the receiving end of the lines

Z is the impedance of receiving end

Substituting this condition in equations (1.5), (1.6), (1.7) and (1.8).

4
VR
Iy
Ik
Vi
To solve these equations,

Let x

Then I

But I
C+D

Cx+ Dx

A—-B

Similarly, equation (1.12) becomes,
Vi

But Vg,

A+B

A-B

Adding the equations (1.13) and (1.14),

2A
A

Similarly subtracting the equations (1.13) and (1.14)

2B

B
EMTL

A+B

= C+D

o

I
vy

O
|
-}

o)
=
[

® |
N =<

= |
= |t

w | —
o
>
l

=

®!
..}_
-

1

x (A-B)
A-B

85 g 5

Cx—Dx
A+B

Cx—Dx
Cx-+Dx

2Cx

Cx

—2x Dx
—Dx

115
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... (1.9)
TR0

i AT

s AT

.. (1.13)

. (1.14)
.. (1.13)
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Substituting the values of A and B in the following equations.
Vp = A+B
= Cx-Dx
But I = C+D

Ipx = Cx+Dx

Vg = Cx—-Dx
Adding the equations (1.15) and (1.16),
2Cx = IRX+VR
I Vr
C=3*%
Ig Vg Y
C = > +2 7 — [
Subtracting the equations (1.15) and (1.16),
D = Lx—Vy
IR Vg
D=3 %
IR Vg Y
D=5 "% N Z
But A = Cx
Iy Vi
A= £ x+?
Vr Ir Z
A= 3 -4-_2 ;
B = -Dx
Ip Vr
B = -5 X + >
Ve I V4
-B=3 -3 Y
The characteristic impedance is defined as
7
L. = v
R

G+joC
EMTL
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. (1.15)
... (1.16)

... (1.18)

.. (1.19)

s (12100

..(120
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Substituting the value of Z_ in equations (1.19), (1.20), (1.17) and (1.18),

Ve R ¥
A= 2Ny
&= ¥ o
Yoo Z, ]
A== |[1 +—QJ X122
i R
Ve Iz Z
B=7% ~3 \/;
Vv V
T
VR Z‘o]
B & 3 {1 - Ze | ... (1.23)
Iz Vi Y
C=3 *tT327\zZ
IR IRZR
= 3 2Z0 ['.' VRzIRZR]
IR ZR
¢ & [Hz—o} ... (1.24)
Ix Vi Y
D=5 -2\zZ
_ kR kg
=27 25
Iy 7
D= 5[1+Z_0:] .. (1.25)

Substituting the values of A, B, C and D in equations (1.5) and (1.6), the solutions of the
differential equations are

VR ZG VY VR ZO —~\ZY
V=3 (1+ZR) eNoTE 4 5 l_ZR g VETX .. (1.26)
I s e I Z v
2 Z, 21 7g, -
VR I—'( Zo 7"‘ ( ZO 7Y —[
- YR %) NZYa [, Lo} —\ZYx
V=3 !_Ll "% e -kl 2 e J 117 ... (1.28)

EMTL
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I Z ; Z -
P = B[ (1.2 B [y B T .. (1.29)
2 Z Z,

After simplification,

v o YR z¥x VR 2o \Z¥s VR NZ¥x_YR Zo 7V
N 2 Zp 2 %z,

2
_ R ozvs [RZAR 7V R TV IRR_mx
I = e e
2 % 2, 2 Z,
\]_Yx + Y x '\f(_Yx _ )—\f}ﬁ’x
e e e :
V= VRL 2 J+IRZO 2 [ VR =Ig Zg]
—JZY > ‘
P 1 e\/ﬁ-"-!-e \/L_t)+ﬁ(8\lﬁx_€“\jz_yx) e :E‘
R 2 L "R Zp
Then equations can be written in terms of hyperbolic functions.
V = Vi cosh\/ ZY x+ Iy Z, sinh NEY % ... (1.30)
I = IcoshyZY x + -Z—R sinh\JZY x .. (131)

1 i
These are the equations for voltage and current of a transmission line at any distance “x’
from the receiving end of transmission line.

The equations for voltage and current at the sending send of a transmission line of length
‘I’ are given by

Vr : ‘ Vg |

Vg = Vycosh NZY I + Z_ Z, sinh \ZY I !: IR:ZJ

I, = Ipcosh\ZY 7 + i sinh\JZY [ [ V=1 Zg]

0

) Z, B}

Vs = Vg| cos\ZY I+5° sinhVZY I | . (132)
R N

i f & ZR & _L s s |

I = Ig | cosy 2Y [ + 7. sinh\f ZY [ | (1.33)
i 0 |

1.4. WAVELENGTH AND VELOCITY OF PROPAGATION
The propagation constant (y) and characteristic impedance (Z,) are called secondary

constants of a transmission line.

; . s 118
Propagation constant is usually a complex quantity.

EMTL v = a+jp

2



Malla reddy college of engineering and technology DEPT.OF ECE

where o is the attenuation constant.
B is the phase shift.
vy = \ZY

where Z = R+joL
Y = G+jal

The characteristic impedance of the transmission line is also a complex quantity.

z
Zy =AY

Zy = \/%{'ﬁ% ... (1.34)
Propagation constant is a4+
= V (R+joL) (G+joC)
o+if = \ RG-w2LC +ju(LG + RC) .. (1.35)

Squaring on both sides,
(a+jB? = RG-a2LC+jo(LG +RC)
2-B2+2jaB = RG-o?LC+jo (LG +RC) 0 (1.36)
Equating rea! par.,
o?-B2 = RG-wLC
a2 = B2+ RG-w2C .. (1.37)
Equating imaginary parts,
2B = o (LG+RC)
Squaring on both sides,
402pB2 - ©2(LG+RC)

2
o2 B? = - (LG +RC)?
Substituting the value of a2 [eqn. (1.37)] in the above equation,

3
(B?+RG-w2LC) B2 = T (LG +RCP

B*+ B2 (RG-wLC) - % (LG +RCP-= 0

The solution of the quadratic equation is 119

g = —(RG-wlO): \[(RG - ©?LC)? + 02 (LG + RC)?
EMTL - -
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By neglecting the negative values,

©2LC - RG +v (RG - ©2LC) + 2 (LG + RC)?
B = 5 ... (138)

a? = B2+RG-w?LC .
Substituting the value of 3 [eqn. (1.38)] in the above equation,

o3 0 W T e o I e 2
2 o QAC RG +v/ (RG CJ2LC)+(,J (LG+RCP o
RG - 02LC +\ (RG - 02LCY + 02 (LG + RCY?
2

RG — 02LC +1/ (RG - @?LCR + @2 (LG +RC)? -
Lo = 5 ... (1.39)

For a perfect transmission line R =0 and G =0,

B2 = oLC
B=oyLC [only positive value]
Velocity :
The velocity of propagation is given by, .
v = Af 4
= 2n f;—;t
v = % ['.'[3:%?‘ and ® =2x f]
Substituting the value of = \/L_C
®
NS

I
¥ =S

This is the velocity of propagation for an ideal line.

Wavelength :

The distance travelled by the wave along the line while the phase angle is changing
through 2n radians is called wavelength.

B?u =21'£
5 120
T v

A == or A= =
B f

EMTL
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1.5. INPUT IMPEDANCE AND TRANSFER IMPEDANCE OF TRANSMISSION LINE
Input impedance :

The equations for voltage and current at the sending end of a transmission line of length
‘I’ are given by

<
»
1l

z
vR[cosh ZY 1 + 29 sinh\/ ZY ] ) . (1.32)
- R

o dg = Iy (cosh\/ LY Z~L smh\/ ZY" | ) ... (1.33)

The input impedance of the transmission line is,

v,
Z, = —
S [S

Z
Wi (cosh NZY I + 5= sinh\[ZY lj
R
7
Ip (cosh N ZY 1+ sinh\[ZY l)
0

Z
Iz Zx (cosh VZY I + Z—O sinh\/ ZY IJ
a R

7
IR(cosh \/ A 1+Z—R sinhy/ ZY IJ
0

Zy(Zg cosh \/ ZY [+ Z,sinh [ ZY D 40
(£ cosh \/ LY {+Zsg sinh\| ZY ) .- (1.40)

ZS:

Let m = v
The input impedance of the line is
| Zy coshyl+Z sinhy l]
 Zgcoshyl+Zy sinhy/

Zs = T

or ZS = Z;

érZR+ZO tanh y/
| Lyt Zg tanhy/

in a different form, the equations for voltage and current at transmitting end of a line is
given by equations (1.28) and (1.29),

v i Z 57
\!'S:‘.,_R[(IJF‘z—qje Z”+|(1—Z—0)e_ ZY[:’ .. (1.28)
’ 21X R \ R
IR [ ZR N ZY i ( ZR ) NZvYi 121
IS=E[LI+Z—O]9 +i\1—z J ] ... (1.29)

EMTL
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X ﬁ M NZYL Zg — \izvz
o ) T zR
o B I_R{ Zr*Zo NZYL 4 Zo—Zg \IZY! _'{
S I A a Zo
or Vg = TJ(T [e“ + ZR+Z v (141)
o = Ir (ZNZ“]I— NIV (Z ZC’] g~ NZY! i! .. (1.42)
52 Zy JL \Zr T2
The input impedance of the transmission line is given by,
NZYI o Nz
7. = Vs _ g | ‘Rt 20 P Ve e 25 (1.43)
N ‘ = sox (18S)
° s ? NZYL _ ZR Zo sNZY RORTR

Let \[ZY = 7y

The input impedance of the transmission line is,

eyl + [MJQ—M' f
Zp+Z,
Zo = 2| — (ZR_Z()) — . (1.44)
el 1l
3 L+ Z |

If the line is terminated with its characteristic impedance ie., Zp = Z,, then the input

impedance becomes equal to its characteristic impedance.
Zs = Zy
The input impedance of an infinite line is determined by letting / — co.
Zs = Zg

It is found that a line of finite length, terminated with its characteristic impedance, appears
to the transmitting end generator as an infinite line. A finite line terminated with Z, and an

infinite line are same by measurements at the source.

| Zp—2Z,
If K = m, then
‘ wl —vl 7}
‘ e!"+Ke !
Zs = Z, L‘”-Ke‘” J .. (145)

122
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Transfer impedance :

Transfer impedance is used to determine the current at the receiving end if voltage at
transmitting end is known. Transfer impedance of a transmission line is defined as the ratio of
voltage at the sending end (transmitted voltage) to the current at the receiving end (received
current).

Equation (1.41) becomes

Ve(Zg+Zy) -
Ve 7. e +Ke 7
IR(Zg+Zy) | .
Vg = ——5— (" +Ke™") [ =T, Zal
‘V’{S ZR+ZO . .
Zr =7, = T @ KT

-+

2\ Zpt il

Lgil Lon—7
- (BR)er + (BFR) e

v -y :Y[ -yl
e’’’ +e e’ —e
- ZR( 2 )‘“ZO( 2 )

= Zgcoshyl + Z,;sinhy!

Zr %0 (e’-’l Zr=Z —y! )

e e ! et! — 7! :
L O S =coshy/ and = sinh y/

Zy = Zgcoshyl+Z,sinhyl

1.6. LINE DISTORTION

Signal (e.g., voice) transmitted over a transmission line is normally complex and consists
of many frequency components. Such voice voltage will not have all frequencies transmitted
with equal attenuation and equal time delay, the received waveform will not be identical with
the input waveform at the sending end. This variation is known as distortion. There are two
types of line distortions. They are frequency distortion and delay distortion.

Frequency Distortion : A complex (voice) voltage transmitted on a transmission line will
not be attenuated equally and the received waveform will not be identical with the input
waveform at the transmitting end. This variation is known as frequency distogsion.

The attenuation constant is given by
EMTL
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\/ RG — @2LC +\J(RG — 0?LC) + w? (LG +CR)?
a _—
2

o. is a function of frequency and therefore the line will introduce frequency distortion.

Delay or Phase Distortion : For an applied voice-voltage wave the received waveform
may not be identical with the input waveform at the sending end, since some frequency
components will be delayed more than those of other frequencies. This phenomenon is
known as delay or phase distortion.

The phase constant is
B = \/ RG - w?LC + \/ (RG - 03LC)? + @? (LG +CR)?
T 2

B is not a constant multiplied by w and therefore the line will introduce delay distortion.

Frequency distortion is reduced in the transmission of high quality over wire lines by the
use of equalizers at the line terminals.

Delay distortion is of relatively less importance to voice and music transmission. But it
can be very serious for video transmission. This can be avoided by the use of co-axial cables.

1.7. THE DISTORTIONLESS LINE

If a line 1s to have neither frequency nor delay distortion, then attenuation factor o and the
velocity of propagation v cannot be functions of frequency.

®
e 9=
B

p must be a direct function of frequency.

. \/ ©2LC — RG + \/(RG — 02LC) + w? (LG + CR)?
= 2

For (3 to be a direct function of frequency, the term
(RG — ®2LC)? + @? (LG + CR)? must be equal to (RG + w2LC)?
R2GZ + 0*.2C2 - 20?2LCRG + ©2L2G + 02C2R? + 20?2LCRG
= RZG? + 0*L2C? + 202LCRG
02L2G2 + ©2C2R2 = 2 »2LCRG
02[2G2 + ©2C2R2 - 202LCRG = 0
(LG-CR): = 0
LG = CR

i

G
C 124

s is the condition for distortionless iine.
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Propagation constant y = '\f (R +jol) (G +jwC)

R | G .
= \/L[i:'-*'_]OJ)C(E:L](D)

R G . )
= \[E/\/(E-:;—J@)(Ejvm/l
G

R
ButE =

o]

— R
Y = YLC | [ +jo

Then B = \/ o’LC —RG ; RG + 02LC
” 202LC
2
B = m_\/ﬁ
Velocity of propagation is y = %
1

¥ T yLc.

This is the same velocity for all frequencies, thus eliminating delay distortion.

Attenuation factor

L \/ RG — 02LC +(RG — 0?’LCY + 02 (LG + CR)
- )

e

To make « is independent of frequency, the term (RG — @?LC)* + o2 (LG + CR)? is
forced to be equal to (RG + ©w?LC)2.

(LG-CR)? = 0
LG = CR
L R
cC ~ G

This will make o and the velocity independent of frequency simultaneously. To achieve
this condition, it requires a very large value of L, since G is small.

RG - @?LC + + 2] C)2

The attenuation factor a = '\/ G- wlC \,)/(RG 0<LC)
_ _\/ RG - 0?LC + RG + 0?LC
- 2 TrZo

EMTL
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a = \RG
It is independent of frequency, thus eliminating frequency distortion on the line.

The characteristic impedance Z, is given by

| R+joL
o = \/ G+joC

Z

R
But L =¢C for distortionless line.
T
0 ‘\ C

It is purely real and is independent of frequency.

]

7

1.8. TELEPHONE CABLE , &£

In the telephone cable the wires are insulated with paper and twisted in pairs. This
construction results in negligible values of inductance and conductance. Therefore Lo << R
and G << Co.

Z = RtjoL = R
Y = G+jalC = joC

Propagation constant y = \JZY
= 5 JoRC
| i20RC
N 2
But v = a+jp
I :
a+iB = {I+j) !‘mjc
; ; ; . | ®RC
Equating real and imaginary parts @ = N\J
| ®RC 126
P = ‘\V 5

EMTL
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. ; ) o) 20
Velocity of propagation v = [ = —/——= = RC
B oRC -
2
‘ - P2 | R | R
The characteristic impedance Z, = v =l == — L-45°
. [ Y joC oC

It is found that the propagation constant o and velocity of propagation v are functions of
frequency. Thus, the higher frequencies are attenuated more and travel faster than the lower
frequencies resulting in considerable frequency and delay distortion.

1.9. LOADING OF LINES

It is necessary to increase L/C ratio to achieve distortionless condition in a transmission
line. This can be done by increasing the inductance of a transmission line. Increasing
inductance by inserting inductances in series with line is termed as loading and such lines are
called loaded lines. The lumped inductors, known as leading coils are placed at suitable
intervals along the transmission line to increase the effective distributed inductance.

The effect of loading can be realised by comparing the unloading of a transmission line in
the attenuation Vs frequency graph. Fig.1.5 shows that the loaded line offers a low
attenuation when compared to the unloaded line only for limited range of frequencies.

The important aspect of loading coil design is that saturation and stray fields should be
avoided. It should have a low resistance and should be in small size. In general toroidal cores
are used for loading coils.

Types of Loading

The open wire lines have more inductance of their own and so have much less distortion
than cable. Therefore, the loading practice is not applicable to open wires but it is restricted to
cables only. There are three types of loading in practice. They are

(a) Lumped loading
(b) Continuous loading
{c) Patch loading

(a) Lumped loading : The inductance of a transmission line can be increased by the
introduction of loading coil at uniform intervals. This is called lumped loading. It acts as ¢
low pass filter. So, it is applicable only for a limited range of frequency. The loading coils
have an internal resistance R thus, increasing the total effective inductance increases R.
Further hysteresis and eddy current losses which occur in the loading coils resulting in further
apparent increase in R. Therefore, there is a practical limitation on the value of inductance
that can be increased for the reduction of attenuation. Thus the loadingoroil should be
carefully designed so that it will not introduce any distortion.

EMTL
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A
f Unloaded i
/ ! |
¢ /

— Lumped loaded

/_*/.___. Continuously loaded

(o)

Attenuation

.
o

Frequency (/)

Fig. 1.5. Comparison of loaded and unloaded cable characteristics

(b} Continuous loading : A type of iron or some other magnetic material is wound on the
transmission line (cable) to increase the permeability of the surrounding medium and thereby
increase the inductance. It is a quite expensive method. Further eddy current and hysteresis
losses in the magnetic material increases the primary constant R. Therefore, continuous
loading is used only on ocean cables where lumped loading is difficult. The advantage of
continuous loading over lumped loading is that attenuation factor o increases uniformly with
increase in frequency.

(¢c) Patch loading : It employs sections of continuously loaded cable separated by sections
of unloaded cable. The typical length for the section is normally a quarter kilometer. In this
method the advantage of continuous loading is obtained and the cost is reduced considerably.

1.9.1. Inductance Loading of Telephone Cables

Distortionless line with distributed parameters is used to avoid the frequency and delay
distortion experienced on telephone cables, It is necessary to increase the L/C to achieve

) ; o L R e g )
distortionless condition = = G- Heaviside suggested that the inductance be increased and

Pupin suggested that this increase in the inductance by lumped inductors spaced at intervals
along the line. This use of inductance is calied loading the line. The distributed loading is
obtained by winding the cable with a high permeability steel tape such as permalloy in some
submarine cables.

Consider an uniformly loaded cable with G = 0. Then,

Z = R+joL
¥ = gl [+ G=0]
|
e ————— |i f L 0 128
Z = | R2+(Le)? l tan-! (%)

EMTL
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Propagation constant 7y

il

Since R is small with respect to Lo, the term kfg

ol |
If 6
cos 0

For small angle,
sin B
so that cos 5
Similarly, sin 6

Propagation constant v

A

DEPT.OF ECE

— | R
= § Re+Lm} I[% - tan—lL—Q"
LY
| 7 3
5 L R |
’\/\} RZ-+(La)? g'z' tan‘li“— !kmcg '
=y
i 24 2 — fan-1 —
V oC R2+ (Lo)? tan™
R
O] G L
(0C) (Lw) (Lc)) 5 tan!
O (RY = 1 R
A/ + . S
Al LE \/ 1 k ) ‘2 5 tan T
) i1s neglected,
J
| T R
= oy LC 3 -5 tan'“‘a
_=_ 1 R
=555 tan~ T o
(a1 R
= coskz = Tt
] R
- L g— ] o
sin ( 5 tan™' T - ) S el
~ tanO~6
i R
2L /
_ . (x 1 G R
- sm; 5 — 5 tan ol 1»
= a)\/ LC (cos@*j sin 0)
e ¢ L ( T_]J
R~ LC ‘
= —\ELE +jo N LC 19
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R C
=8 i"+jco LC

=

. Attenuation constant o0 =

e |x
5
Of 10

Phase-shift § =

Velocity of propagation v =

™|E

A

JL1C

Tt is noted that if G = 0 and Lo >> R, the attenuation and velocity are both independent of
frequency and the loaded cable will be distortionless. Attenuation may be reduced by
increasing L. Continuous (uniform) loading is expensive and achieves only a small increase
in L per unit length. Lumped loading is preferred for cables.

Campbell’s Equation
An analysis for the performance of a line loaded at uniform intervals can be obtained by
considering a symmetrical section of line from the centre of one loading coil to the centre of
the next coil. The section of line may be replaced with an equivalent T section having
symmetrical series arms as shown in Fig.1.6. The series arm of T section including loading
coil is given by
Zyit
=

“—

+

il

b2 Iq[\]

Z
> [From the fig.]

. Zy . ; .
where = is the series arm of T section.

'/ Loading coils \

------ A1l AAAA~ AANA e T S == -
w Z Z; s Z, i
| 2 2 L 2 2

oy ST S — S S

Fig. 1.6. Equivalent T section for part of a line between two lumped loading coils

L i B
5> = 4 tanh 5
Z) Z vl
] fal .
gy e e R Rl tanh{% 130

EMMere / is the distance between two loading coils.
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The shunt Z, arm of the equivalent T section is

Z

For loaded T section

cosh y'/

LY

But tanh ‘.;

Z

0

sinh v/

vl
g Ly tanh Z

4]

sinh y/

cosh v/ —1

Substituting this value in above equation

". cosh y'/

cosh y'/

sinh v/
Ze , , coshyl-1
£ 2 ©  sinhy/
+
Ze
sinh v/
Z,
5 sinhyl + Z, (cosh v/~ 1)
| + 7
ZC =
1 + 77 sinhy/ + coshy/ — 1
< = D
ZC

57 sinhyl + coshy/
g

This equation is called as Campbell’s equation and it is used to determine th. value of ¥

umped and partially distributed elements. For a Lable

of a line section consisting of artlaily l

Z,5 is capacitance and the cable capacitance and lumped inductances appear similar to the
circuit of the low pass filter. It is found that for frequencies below cutoff, the attenuation is
reduced, but the cut-off attenuation is increased (as a result of filter action). In practice, pure
distortionless line is not obtained by loading, because R and L are to some extent functions of
frequency. Eddy current losses are more in these coils. However, there is a major
improvement in the loaded cable over the unloaded cable for a reasonable frequency range.

1.10. OPEN CIRCUITED AND SHORT CIRCUITED LINES

; : 4 . 131 .
The expressions for voltage and current at the sending end of a transmission line of length

‘I’ are given by
EMTLg Y
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Vg = VR[cosh\/ Yl+'—‘sm \ Y]J
ZR

Iy = Ig|cosh[ZY I +7 " sinh\[ZY IJ
o

The input impedance of a transmission line is given by

\IY
Z, = =

= z -
VR cosh\/ZY [+ :— sinh \/Z-Y [
IR cosh\[ZY I+ smh \ZY 1

Vi Z, (Zgcoshyl+Z, sinhyl)
I Zg (Z, coshyl+ Zy sinh y])

i (Z cosh y/ + Z_ sinh y[\ I vy
cosh y/ + Zp sinh yl) L Ly = Iy

. _ (Zy coshyl+Z, sinh Yl\l
BT LZD cosh yl + Zg sinh ¥/ |

if short circuited, the receiving end impedance is zero.
I8y g = 0
(Z,sinhyl "
il ™ kZ cosh v/
o
Short circuited impedance
L, = Ly tanh vl

If open circuited, the receiving end impedance is infinite.

ie., ZR = w

Input impedance of transmission line can be written as

coshyl + = sinh vl
7R

Zs = Z

0

(&) .
= cosh y/ + sinh y/
Zy 132

E?A;]J_Ig_)lying Lp =0
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Then Z,, = Z, liz_ils:%‘;;]:l
The open circuited impedance
Z, = Z,cothyl
By multiplying open circuited impedance and short circuited impedances
ZpeZoo = Z2tanhylcothyl
= 72
The characteristic impedance is given by

ZO = \/ ZOC ZSC

By dividing short circuited impedance by open circuited impedance.

Z,, Z tanh y/
Z, ~ Z,cothyl

= tanZh y/

tanhyl = ’\',/?

i
oc

SC
vl = tanh! ——
oc

N| N

1.11. REFLECTION

When the load impedance is not equal to the characteristic impedance of transmission line,
reflection takes place.

The expressions for voltage and current on the transmission line are

N FF Z -/ Z. N — |
V= -2—‘{[* 1+5° V2V x4 | 1—?—”,'53‘“"‘”‘_1
\ ~R J \ ~Ruy
= B[ 8 V7, [ B s
3 1 g FLg |
Vo [ Zo+Z. F Feon . -
5¢ vV = _')_RL RZ oe\fﬁfx_f_ R = L&A]I
= R R
x R [Zr+Z, f7 Zx~Zy _ f7v4 133
T2 L & Z
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Vi (L H 2 o
R R 0

Iz (Zg +Z,) ) Zp-1Z, o
1= "5, |e¥-|z.7z, )"
=R ; R ]
By y=~ZY ]

If the transmission line is not terminated with the characteristic impedance ie., Zp # Z,

DEPT.OF ECE

or

(mismatch) the above expressions for voltage and current exist. It consists of two waves, one
is moving in the forward (positive x) direction which is called incident wave and the other is
moving in the opposite (negative x) direction which is called reflected ray. The term varying
with ¢ represents a wave progressing from the sending end towards the receiving end and
the amplitude decreasing with increased distance. The term varying with e~ ** represents a
wave progressing from the receiving end towards the sending end, decreasing in amplitude
with increased distance.

If the transmission line is terminated with characteristic impedance i.e., Zg = Z, (properly
matched) then the voltage and current expressions are

N = VR e
I = IR e‘f"'
The incident wave moves only in forward (positive x) direction. There is no reflected
wave in the opposite direction.
1.11.1. Reflection Coefficient

Reflection coefficient is defined as the ratio of the reflected voltage to the incident voltage
at the receiving end of the line.

Reflected voltage at load _ VR
Incident voltage atload — Vg

The equation for the voltage of a transmission line is

2 2y P' zR+ZOJ"'J-
v Ve@rtZ)  Vr (Ze-2)
57 27,

The first term (¢¥X) represents incident wave, whereas the second term (e~ ) represents the
reflected wave. The ratio of amplitude of the reflected wave voltage to the amplitude of the

incident wave voltage is nothing but reflection coefficient.
134
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‘VR(ZR__ZU)

Ve kZe £2) Zp + 7,
2

ZR_ZO

KL:=‘ZRﬂ—ZD

It is also defined as in terms of the ratio of the reflected current to the incident current. But
it is negative.
Reflected current at load I

~K = Tncident currentatload - I

If the transmission line is terminated by its characteristic impedance (Zg = Z,), the

reflection coefficient becomes zero.

1.11.2. Reflection Factor and Reflection Loss

Consider a transmission line with a voltage source Vg and its impedance Z; and load
impedance Z, as shown in Fig.1.7. If Z, is not equal to Z;, reflection takes place. The power

delivered to the load is less than that with impedance matching. Reflection results in power
loss. This loss is known as reflection loss.

r e |
|

|

r A S SRR —

|
|

i
i
\
|
|
i
i
i

L: : — -

Fig. 1.7. Transmission line with voltage source Vg and impedance Z;

Image matching between the impedances Z; and Z, can be obtained by inserting an ideal
transformer and a phase shifting network between Z; and Z,. If I, and 1, be the currents in the
primary and secondary of the transformer respectively, the current ratio of the transformer is
given by

Z, may be adjusted to that of Z, by choosing the proper transformation ratio and phase
angle. Z, is the image impedance of Z,. The current through the source is 135
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Vs
=5

The current flow in the secondary of the transformer under image impedance matching is

) brepalB oY [T Vs
z '\ 4L, 2%, Z, " 24/Z,Z,

- 'T'he current in the load impedance Z, without image matching.
L) = sl
| Z,+Z, |
The ratio of the current actually flowing in the load to that which might flow under
matched condition is known as reflection factor.

| | Vs |
L 1Z4+Z,]
I | Vg |

12/ Z,Z, |
N

il e

The reflection factor indicates the change in current in the load due to reflection at the
mismatched junction.

The reflection loss is the reciprocal of the reflection factor in nepers or dB.

1
Reflection loss = In T

= In Zl—%‘z‘—“ nepers
2 J B B | T
201 s T PP

L PNy

1.12. T AND = SECTIONS EQUIVALENT TO LINES
A T section is shown in Fig.1.8 with two ports 1, 1 and 2, 2.
74 7,
1 O——AAMN AN 02
Z3
, 1o 02 136

Fig. 1.8. T section network
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Impedance measurements may be made at any port with the other port opened or shorted.

Let

Zioc
Zisc
Zroc
Zosc

Zioe

Zisc

Zroc

qur‘

<ol

be the impedance at port | when port 2 is open circuited.
be the impedance at port 1 when port 2 is short circuited.
be the impedance at port 2 when port 1 is open circuited.
be the impedance at port 2 when port 1 is short circuited.
= Z,+Z,
= Z2y*Z,

Zy Z;
B Zz+21+23

By solving these equations, the values of Z,,Z, and Z, are determined.

ZIOC"ZISC

72
Z

Z,Z
" Z-Zag
27 HE

Lo KL B
Lyt Zy

2
Z3

2
Z’3
 Zyoc A~ a0e]

= Zyoc (Zioc—Z50)

%= i“\/Zzoc (Z10c—Z50)

Taking the positive value,

EMTL

Z4
Z,

Z,

Z,

= A Zsoe Z1oc—Z150)

= ZiOC—Z3 [.'.Z]OC:ZI+Z3]
= Zioc= \ Zaoc @1oc—Z150)
= Zyoc—2Z; [V Zypc=2Zy+Z5]

= Zyoc~ \ Zaoe @ioc—Z1s0)
= Zioe =N Zaoc Crge~2Z150)
= Zyoc =\ Zaoc Z10c - Z150)

137




MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT. OF ECE

UNIT -V
Transmission Lines — 11

SC and OC Lines

Input Impedance Relations

Reflection Coefficient

VSWR

M4, A 2, L /8 Lines - Impedance Transformations
Smith Chart - Configuration and Applications,
Single Stub Matching
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Ilustrative Problems.
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This means, more the current flows towards the surface of the conductor, it flows less towards the center,
which is known as the Skin Effect.

Inductance
Inan AC transmission line, the current flows sinusoidally. This current induces a magnetic field

perpendicular to the electric field, which also varies sinusoidally. This is well known as Faraday's law. The
fields are depicted in the following figure.

Electromagnetic Wave

m..\i'w-___i

] Magnetic field
3 Electricfield

This varying magnetic field induces some EMF into the conductor. Now this induced voltage or EMF flows
in the opposite direction to the current flowing initially. This EMF flowing in the opposite direction is
equivalently shown by a parameter known as Induetance, which is the property to oppose the shiftin
the current.

Itis denoted by "L". The unit of measurement is "Henry H".
Conductance

There will be a leakage current between the transmission line and the ground, and also between the phase
conductors. This small amount ofleakage current generally flows through the surface of the insulator.
Inverse of this leakage current is termed as Conduetanee. It is denoted by "G".

The flow of line current is associated with inductance and the voltage difference between the two points is
associated with capacitance. Inductance is associated with the magnetic field, while capacitance is
associated with the electric field.

Capacitance
The voltage difference between the Phase conductors gives rise to an electric field between the

conduetors. The two conduetors are just like parallel plates and the air in between them becomes
dielectric. This pattern gives rise to the capacitance effect between the conductors.
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Characteristic Impedance

If a uniform lossless transmission line is considered, for a wave travelling in one direction, the ratio of the
amplitudes of voltage and current along that line, which has no reflections, is called as Characteristic
impedance.

Itis denoted by Zg

[ voltage wave value

Zo =
! x' current wave value
70— [ R+ jwlL
' \ G+ juc

For alossless line, Ry — , /L

Ve
Where [, & ¢ are the inductance and capacitance per unit lengths.
Impedance Matching

To achieve maximum power transfer to the load, impedance matching has to be done. To achieve this
impedance matching, the following conditions are to be met.

The resistance of the load should be equal to that of the source.
Ry = Rs
The reactance of the load should be equal to that of the source but opposite in sign.
X =—Xs
Which means, if the source is inductive, the load should be capacitive and vice versa.
Reflection Co-efficient

The parameter that expresses the amount of reflected energy due to impedance mismatch ina
transmission line is called as Reflection coefficient. It is indicated by p rho.

It can be defined as "the ratio of reflected voltage to the incident voltage at the load terminals”.

re flected voltage 'V,
i f el = at load terminals
tncident voltage Vi

Ifthe impedance between the device and the transmission line don't match with each other, then the
energy gets reflected. The higher the energy gets reflected, the greater will be the value of p reflection
coefficient.

Voltage Standing Wave Ratio VSWR
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The standing wave is formed when the incident wave gets reflected. The standing wave which is formed,
contains some voltage. The magnitude of standing waves can be measured in terms of standing wave
ratios.

The ratio of maximum voltage to the minimum voltage in a standing wave can be defined as Voltage
Standing Wave Ratio VSWR. It is denoted by "S".

IVmam |

) |1";m':-:- |

1 <§5<o0
VSWR describes the voltage standing wave pattern that is present in the transmission line due to phase
addition and subtraction of the incident and reflected waves.

Hence, it can also be written as

The larger the impedance mismatch, the higher will be the amplitude of the standing wave. Therefore, if
the impedance is matched perfectly,

Vinas : Vimin =1:1
Hence, the value for VSWR is unity, which means the transmission is perfect.
Efficiency of Transmission Lines

The efficiency of transmission lines is defined as the ratio of the output power to the input power.

Power delivered al receplion
- » 100

% e f ficiency of transmission line 1 =

Fower sent from the transmission end
Voltage Regulation

Voltage regulation is defined as the change in the magnitude of the voltage between the sending and
receiving ends of the transmission line.

. sending end voltage — receiving end volfage
Y voltage regulation = = = = 2% 100
sending end vollage

Losses due to Impedance Mismatch

The transmission line, if not terminated with a matched load, occurs in losses. These losses are many
types such as attenuation loss, reflection loss, transmission loss, return loss, insertion loss, etc.

Attenuation Loss

The loss that occurs due to the absorption of the signal in the transmission line is termed as Attenuation
loss, which is represented as
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E' — Er
Attenuation loss(dB) = 10 logyy ['—]

B,
Where

* [; =theinput energy

* E, =thereflected energy fromthe load to the input

e [ =the transmitted energy to the load
Reflection Loss

The loss that occurs due to the reflection of the signal due to impedance mismatch of the transmission line
is termed as Reflection loss, which is represented as

: flection loss(dB) =101 —_
Re flection loss(dB) = 10 logo [Ei — Er]

Where
* F; =the input energy
s FE. =thereflected energy from the load

Transmission Loss

The loss that occurs while transmission through the transmission line is termed as T ransmission loss,
which is represented as

Transmission loss(dB) = 10 log Ei
t

Where
* [E; =the input energy

* [, =the transmitted energy
Return Loss

The measure of the power reflected by the transmission line is termed as Return loss, which is represented
as

Return loss(dB) = 10 logy %.

Where
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e F; =theinput energy

¢ E, =thereflected energy
Insertion Loss

The loss that occurs due to the energy transfer using a transmission line compared to energy transfer
without a transmission line is termed as Insertion loss, which is represented as

Insertion loss(dB) = 10 logyy %
2

Where

e FE, =the energy received by the load when directly connected to the source, without a transmission
line.

s E, =the energy received by the load when the transmission line is connected between the load and
the source.

Stub Matching

If the load impedance mismatches the source impedance, a method called "Stub Matching” is sometimes
used to achieve matching.

The process of connecting the sections of open or short circuit lines called stubs in the shunt with the
main line at some point or points, can be termed as Stub Matching.

At higher microwave frequencies, basically two stub matching techniques are employed.
Single Stub Matching

In Single stub matching, a stub of certain fixed length is placed at some distance from the load. It is used
only for a fixed frequency, because for any change in frequency, the location of the stub has to be
changed, which is not done. This method is not suitable for coaxial lines.

Double Stub Matching

In double stud matching, two stubs of variable length are fixed at certain positions. As the load changes,
only the lengths of the stubs are adjusted to achieve matching. This is widely used in laboratory practice
as a single frequency matching device.

The following figures show how the stub matchings look.
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- Eheprt cireud tesd

% ‘ " stub
" P

2

¥
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Transmission Line

Transmission Line 2, =2,

VSingIe Stub Matching Double Stub Matching
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Transmission Lines — Smith Chart &
Impedance Matching
(Intensive Reading)

1 The Smith Chart

Transmission line calculations — such as the determination of input impedance using equation
(4.30) and the reflection coefficient or load impedance from equation (4.32) — often involves
tedious manipulation of complex numbers. This tedium can be alleviated using a graphical
method of solution. The best known and most widely used graphical chart is the Smith chart.
The Smith chart is a circular plot with a lot of interlaced circles on it. When used correctly,
impedance matching can be performed without any computation. The only effort required is
the reading and following of values along the circles.

The Smith chart is a polar plot of the complex reflection coefficient, or equivalently, a
graphical plot of normalized resistance and reactance functions in the reflection-coefficient
plane. To understand how the Smith chart for a lossless transmission line is constructed,
examine the voltage reflection coefficient of the load impedance defined by
V. Z, -7
[ =-="t 20_1 +,T,., 1
L v ZL +Z() re Jim ( )

inc
where I, and I';,, are the real and imaginary parts of the complex reflection coefficient I'; .

The characteristic impedance Zj is often a constant and a real industry normalized value, such
as 50 Q, 75 Q, 100 Q, and 600 Q. We can then define the normalised load impedance by
z, =2, 1Zy =R+ jX)/ Zy=r+ jx. 2)

With this simplification, we can rewrite the reflection coefficient formula in (1) as
_Z,-Z)/Z, z -1

I = _+ T, = . 3
LT e w72, 2, 41 @
The inverse relation of (3) is
0
ZL=1+FL=1+’FL’e‘< @)
1-T, 1-|r,]e"
or
1+T )+ jT
rajr= L)+ 8
(l_rre)_jrim

Multiplying both the numerator and the denominator of (5) by the complex conjugate of the
denominator and separating the real and imaginary parts, we obtain

1-r 2 -T2
ALY Sl ©)
(1_Frc) +rim
and
2T, 2
x:—lm . (7)

(A-T, ) +T,°

Equation (6) can be rearranged as

p 2 1 2
(rm - ) +T, 2 =[ ] . (8)
1+r 1+7r

145

EMTL



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

EMTL

This equation is a relationship in the form of a parametric equation (x —a)” + (y —b)> =R?

in the complex plane (T’

re?

I';,,) of a circle centred at the coordinates (%,Oj and having a
r+

radius of

T Different values of r yield circles of different radii with centres at different
r+

positions on the I" -axis. The following properties of the r-circles are noted:

e The centres of all r-circles lie on the I, -axis.

e The circle where there is no resistance (» = 0) is the largest. It is centred at the origin and
has a radius of 1.

e The r-circles become progressively smaller as r increases from 0 to oo, ending at the
(I, =LT,, =0) point for an open circuit.

> m

e All the r-circles pass through the point (I',, =1,I",, =0).

See Figure 1 for further details.

7 = ( (short)

Figure 1: The r-circles in the complex plane (I',,T";,) .

Similarly, (7) can be rearranged as

2 2
(Frc - 1)2 + (Fim - lj = (l) . (9)
X X

Again, (9) is a parametric equation of the type (x —a)” + (y —b)* = R? in the complex plane
. . 1 . . 1 .
(I',,I;) of a circle centred at the coordinates (1,—] and having a radius of H Different
x x
values of x yield circles of different radii with centres at different positions on the I' ., =1

line. The following properties of the x-circles are noted:
e The centres of all x-circles lie on the I, =1 line; those for x>0 (inductive reactance) lie

above the I' -axis, and those for x <0 lie below the I, -axis.
e The x =0 circle becomes the I, -axis.
e The x-circles become progressively smaller as ’x’ increases from 0 to o, ending at the
(T, =1, =0) point for an open circuit.
e All the x-circles pass through the point (I',, =1,I";,, =0).
See Figure 2 for further details.
146
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/2

Figure 2: The x-circles in the complex plane (I',.,I';,,) -

To complete the Smith chart, the two circles' families are superimposed. The Smith chart
therefore becomes a chart of r- and x-circles in the (I',,T,,) -plane for ’F’Sl . The

m
intersection of an r-circle and an x-circle defines a point which represents a normalized load
impedance z, =7+ jx . The actual load impedance is Z, =Z,z, =Z,(r+ jx) . As an

illustration, the impedance Z;, =85+ 730 in a Z, =50 Q -system is represented by the point
P in Figure 3. Here z;, =1.7+ j0.6 at the intersection of the » =1.7 and the x=0.6 circles.
Values for I',, and I';, may then be obtained from the projections onto the horizontal and
vertical axes (see Figure 4). These are approximately given by I' =03 and I', =0.16.
Point P, at (I',, =—1,I';,, =0) corresponds to »=0 and x=0 and therefore represents a
short-circuit. P, at (I',, =1,I';, =0) corresponds to an infinite impedance therefore
represents an open circuit.
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Figure 3: Smith chart with rectangular coordinates.
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Figure 4: Direct extraction of the reflection coefficient I' =T", + T, along the horizontal
and vertical axes.

Instead of having a Smith chart marked with I' , and I';, marked in rectangular coordinates,
the same chart can be marked in polar coordinates, so that every point in the I'-plane is
specified by a magnitude |F| and a phase angle 6. This is illustrated in Figure 5, where
several |F| -circles are shown in dashed lines and some O -angles are marked around the
|F| =1 circle. The |F| -circles are normally not shown on commercially available Smith charts,

but once the point representing a certain z, =r+ jx is located, it is simply a matter of
drawing a circle centred at the origin through the point. The ratio of the distance to the point
and the radius to the edge of the chart is equal to the magnitude of |F| of the load reflection
coefficient, and the angle that a line to that point makes with the real axis represents 0. If, for
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example the point z;, =1.7 + j0.6 is marked on the Smith chart at point P, we find that
IC,|=1/3 and 6=28°.

Each |F| -circle intersects the real axis at two points. In Figure 5 we designate the point on the
positive real axis as Py, and on the negative real axis as P,. Since x = 0 along the real axis,
both these points represent situations of a purely resistive load, Z, =R, . Obviously, R, > Z,
at Py where r>1, and R, <Z, at P, where r<1. Since S=R, /Z, for R, > Z,, the value
of the r-circle passing through the point Py, is numerically equal to the standing wave ratio.
For the example where z;, =1.7 + j0.6, we find that » =2 at P, so that S=r=2.

90°

Figure 5: Smith chart in polar coordinates.

Example 1:

Consider a characteristic impedance of 50 Q with the following impedances:
Z,=100+;50 Q Z,=75-7100 Q Z;=j200 Q Z,=150Q

Zs5 = oo (an open circuit) Ze = 0 (a short circuit) Z;=50Q Zs =184 —;900 Q

The normalized impedances shown below are plotted in Figure 6.
z1=2+j 7,=15-;2 73 =j4 74=73
Z5 =00 ze=0 z;=1 7g=3.68 —j18

It is also possible to directly extract the reflection coefficient I' on the Smith chart of Figure 6.
Once the impedance point is plotted (the intersection point of a constant resistance circle and
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of a constant reactance circle), simply read the rectangular coordinates projection on the
horizontal and vertical axis. This will give I, the real part of the reflection coefficient, and

I';,,, the imaginary part of the reflection coefficient. Alternatively, the reflection coefficient
may be obtained in polar form by using the scales provided on the commercial Smith chart.

re ?

=04+02;j T,=051-04; T3 =0.875 + 0.48) r,=0.5
=045 2£27° =0.65 £-38° =0.998 £29° =0.5 £0°
F5=] r5:—1 F7:O rg:096—01]
=1 £0° =1 £180° =0 =0.97 £-6°

Xt <
RN
$08397, 15305
R

K

RADIALLYSCALED PARAMITERS

TONARI) LOAD TOWARD GENIRATOR
I TV TNV 5 1 7 i

AR AN TRl T R T SR
wn L ue &

i

Figure 6: Points plotted on the Smith chart for Example 1.

The Smith chart is constructed by considering impedance (resistance and reactance). It can be
used to analyse these parameters in both the series and parallel worlds. Adding elements in a
series is straightforward. New elements can be added and their effects determined by simply
moving along the circle to their respective values. However, summing elements in parallel is
another matter, where admittances should be added.

We know that, by definition, ¥ = 1/Z and Z = 1/Y. The admittance is expressed in mhos or Q'
or alternatively in Siemens or S. Also, as Z is complex, ¥ must also be complex. Therefore

Y=G+ B, (10)
where G is called the conductance and B the susceptance of the element. When working with
admittance, the first thing that we must do is normalize y = Y/Y,. This results in
y=g+ jb=1/z.So, what happens to the reflection coefficient? We note that
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F_z—l_(z—l)/z_l—y:_(y—lj. an

S+l (z4D)/z l+y 1+
Thus, for a specific normalized impedance, say z =1.7+ ;0.6 , we can find the
corresponding reflection coefficient as I'; =0.33 £28°. From (11), it then follows that the
reflection coefficient for a normalized admittance of y, =17+ ;0.6 will be
I',=-T,=0.33 £(28°+180°).

This also implies that for a specific normalized impedance z, we can find y =1/z by rotating

through an angle of 180° around the centre of the Smith chart on a constant radius (see Figure
7).

Constant
Resistance r

\
Conslzm\t

Reactance x
\

\

\

|

I

I

Figure 7: Results of the 180° rotation

Note that while z and y = 1/z represent the same component, the new point has a different
position on the Smith chart and a different reflection value. This is due to the fact that the plot
for z is an impedance plot, but for y it is an admittance plot. When solving problems where
elements in series and in parallel are mixed together, we can use the same Smith chart by
simply performing rotations where conversions from z to y or y to z are required.

2 Smith Charts and transmission line circuits

So far we have based the construction of the Smith chart on the definition of the voltage
reflection coefficient at the load. The question is: what happens when we connect the load to a
length of transmission line as in Figure 8.

Vi & —® (v, Zp)

&
=

0
¢

L

Figure 8: Finite transmission line terminated with load impedance Z;.
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On a lossless transmission line with k£ =3, the input impedance at a distance z' from the load

is given by
' 1+, e /%
e g e (12)
I(z) " 1-T, e/
The normalised impedance is then
Z,(z") 1+, e’ 14T,
=) el e 1+l (13)

" Zy 1-T, e’ 1-T,

Consequently, the reflection coefficient seen looking into the lossless transmission line of
length z' is given by

[, =0, e/ =0, | e/ (14)

This implies that as we move along the transmission line towards the generator, the

magnitude of the reflection coefficient does not change; the angle only changes from a value
of 0 at the load to a value of (0—2fz") at a distance z' from the load. On the Smith chart,

we are therefore rotating on a constant ’F’ circle. One full rotation around the Smith chart

requires that 2Bz'=2n, so that z'=n/B=A/2 where A is the wavelength on the

transmission line.

Two additional scales in Az'/)\ are usually provided along the perimeter of the

=1 circle
for easy reading of the phase change 2B Az’ due to a change in line length Az'. The outer
scale is marked in “wavelengths towards generator” in the clockwise direction (increasing z')

and “wavelengths towards load” in the counter-clockwise direction (decreasing z'). Figure 9
shows a typical commercially available Smith chart.

Each ’F ’ -circle intersects the real axis at two points. Refer to Figure 5. We designate the point

on the positive real axis as Py, and on the negative real axis as P,. Since x = 0 along the real
axis, both these points represent situations of a purely resistive input impedance,
Z; =R, + jO. Obviously, R, > Z, at Py, where r>1, and R, <Z, at P, where r <1. At the
point Py we find that Z, =R, =SZ,, while Z, =R, =Z,/S at P,. The point Py on an
impedance chart corresponds to the positions of a voltage maximum (and current minimum)
on the transmission line, while P, represents a voltage minimum (and current maximum).
Given an arbitrary normalised impedance z, the value of the r-circle passing through the point
Py, is numerically equal to the standing wave ratio. For the example, if z=1.7 + 0.6, we find

that =2 at Py;,sothat S=r=2.
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RADIALLY SCALED PARAMETERS
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Figure 9: The Smith chart.
Example 2:
Use the Smith chart to find the impedance of a short-circuited section of a lossless 50 Q co-
axial transmission line that is 100 mm long. The transmission line has a dielectric of relative
permittivity €, =9 between the inner and outer conductor, and the frequency under

consideration is 100 MHz.

For the transmission line, we find that B=wl,e,e, =6.2875 rad/m and
A=21/B=0.9993~1 m. The transmission line of length z'=100 mm is therefore

z' /A =0.1 wavelengths long.
e Since z; =0, enter the Smith chart at a point Py.

e Move along the perimeter of the chart (’F =1) by 0.1 “wavelengths towards the

generator” in a clockwise direction to point P;.
e AtP),read r=0 and x=~0.725, or z, = j0.725. Then Z, = j0.725x50 = j36.3 Q.
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Figure 10: Smith chart calculations for Example 2 and Example 3.

Example 3: A lossless transmission line of length 0.434A and characteristic impedance 100 Q
is terminated in an impedance 260 + j180 Q. Find the voltage reflection coefficient, the
standing-wave ratio, the input impedance, and the location of a voltage maximum on the line.

Given z'=0.434)\, Z,=100Q and Z, =260+ j180Q . Then
e Enter the Smith chartat z, =Z, /Z, =2.6+ j1.8 shown as point P, in Figure 10.

e  With the centre at the origin, draw a circle of radius OP, = |FL| =06.

e Draw the straight line OP, and extend it to P/ on the periphery. Read 0.220 on
“wavelengths towards generator” scale. The phase angle 0 of the load reflection may
either be read directly from the Smith chart as 21° on the "Angle of Reflection

Coefficient" scale. Therefore I', =0.6 ¢/'""!** = 0.6 /">,
e The |F|=0.6 circle intersects the positive real axis OP, at r=S§=4 . Therefore the

voltage standing-wave ratio is 4.
e The find the input impedance, move P, at 0.220 by a total of 0.434 “wavelengths toward

the generator” first to 0.500 (same as 0.000) and then further to 0.434—
(0.500-0.220)=0.154 to P;.
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e Join O and P} by a straight line which intersects the ’F’ =0.6 circle at P,. Here r=0.69
and x=1.2,0r z; =0.69+ j1.2. Then Z, =(0.69 + j1.2)x100=69 + ;120 Q2.
e In going from P, to P, the ’F’ =0.6 circle intersects the positive real axis at P, where

there is a voltage maximum. Thus the voltage maximum appears at 0.250-0.220=0.030
wavelengths from the load.

3 Transmission line impedance matching.

Transmission lines are often used for the transmission of power and information. For RF
power transmission, it is highly desirable that as much power as possible is transmitted from
the generator to the load and that as little power as possible is lost on the line itself. This will
require that the load be matched to the characteristic impedance of the line, so that the
standing wave ratio on the line is as close to unity as possible. For information transmission it
is essential that the lines be matched, because mismatched loads and junctions will result in
echoes that distort the information-carrying signal.

Impedance matching by quarter-wave transformer
For a lossless transmission line of length /, characteristic impedance of Z, =R, and

terminated in a load impedance Z, , the input impedance is given by
7 =R, Z, + jR, tan Bl
Ry + jZ, tan Pl
_p Lt IR tan(2n /)
"R, + jZ, tan2m /1)’

(15)

If the transmission line has a length of / =A /4, this reduces to
Z, + jR, tan(m/2)
"R, + jZ, tan(n/2)
_R, Z, /tan(n/2) + jR,
R, /tan(n/2)+ jZ,
0+ JjR,
"0+ jZ,
ZL
This presents us with a simple way of matching a resistive load Z, =R, to a real-valued

Z, =R

(16)

input impedance of Z; = R, : insert a quarter-wave transformer with characteristic impedance
R, . From (16), we have R, = (R, )? /R, ,or

Ry =R R, . 17)
Note that the length of the transmission line has to be chosen to be equal to a quarter of a
transmission line wavelength at the frequency where matching is desired. This matching
method is therefore frequency sensitive, since the transmission line section will no longer be a
quarter of a wavelength long at other frequencies. Also note that since the load is usually
matched to a purely real impedance Z; = R;, this method of impedance matching can only be

applied to resistive loads Z, =R, , and is not useful for matching complex load impedances
to a lossless (or low-loss) transmission line.

Example 4
A signal generator has an internal impedance of 50 Q. It needs to feed equal power through a
lossless 50 Q) transmission line with a phase velocity of 0.5¢ to two separate resistive loads of
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64 Q and 25 Q at a frequency of 10 MHz. Quarter-wave transformers are used to match the
loads to the 50 Q line, as shown in Figure 11.

(a) Determine the required characteristic impedances and physical lengths of the quarter-
wavelength lines.

(b) Find the standing-wave ratios on the matching line sections.

Ry = 64 (R)

Ry = 50(Q)

Figure 11: Impedance matching by quarter-wave transformers (Example 4).

(a) To feed equal power to the two loads, the input resistance at the junction with the main
line looking toward each load must be

R, =2R,=100Q and R, =2R,=100Q
Therefore

Ry =R, R, =80Q

Ry, =R, R, =50Q

Assume that the matching sections use the same dielectric as the main line. We know that
1 1 c
u —_t——— —
r 2
ue Ho€oE,
We can therefore deduce that it uses a dielectric with a relative permittivity of €, =4.

u
x:—”=2—”:15m

ok

The length of each transmission line section is therefore /= A/4=3.75m.

(b) Under matched conditions, there are no standing waves on the main transmission line, i.e.
§'=1. The standing wave ratios on the two matching line sections are as follows:
Matching section No. 1:
R, -R;  64-80
TR, +R) 64480
14T, 14011 .
a-ry,] 1-oar

Ll

Matching section No. 2:
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R, — R -
r,=—% ‘32=25 0 _ 033
R,+R;, 25+50
1[0, 14033
21—, 1-033

Single stub matching

=1.99

In matching of impedances, we are only allowed to use reactive components (i.e. equivalent
to inductors and capacitors — no resistors). Recall that for short-circuited and open-circuited
lossless transmission line sections of length /, the input impedance was given by

Z, = jZytanBl= jZ,tan2nl/2), (18)

and
Z,, =—jZ, cot Pl =—jZ, cot(2m /1), (19)

where Z, =R, is purely real. The impedances in (18) and (19) are purely reactive
(imaginary), and therefore these transmission line sections act as inductors or capacitors,
depending on the line length. We are going to make use of these elements (called transmission
line stubs) to design matching circuits. In practice, it is more convenient to use short-circuited
stubs. Short-circuited stubs are usually used in preference to open-circuited stubs because an
infinite terminating impedance is more difficult to realise than a zero terminating impedance.
Radiation from the open end of a stub makes it appear longer than it is, and compensation for
these effects makes the use of open-circuited stubs more cumbersome. A short-circuited stub
of an adjustable length is much easier to construct than an open-circuited stub.

It is also more common to connect these stubs in parallel with the main line. For parallel
connections, it is convenient to use admittances rather than impedances. In thee cases, we use
the Smith chart as an admittance chart to design the matching networks.

A single-stub matching circuit is depicted in Figure 12. Note that the short-circuited stub is
connected in parallel with the main line. In order to match the complex load impedance Z, to

the characteristic impedance of the lossless main line, Z, = R,, we need to determine the
lengths d and /.
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Figure 12: Impedance matching by single stub method.
For the transmission line to be matched at the point B — B’, the basic requirement is
V=Y, +Y
5=l 20
R,
In terms of normalised admittances, (23) becomes
Yi=ygty, =1 (2]
where y, =g, + jby =Y, /Y, for the load section and y, =Y, /Y, for the short-circuited
stub. Note that y =—jcot(2n//A) is purely imaginary. It can therefore only contribute to
the imaginary part of y,. The position of B— B’ (or, in other words, the length d) must be
chosen such that g, =1, i.e.
vg =1+ jby. (22)
Next, the length / is chosen such that
Yy ==Jjbg, (23)
which yields y, =y, +y, =(1+ jby)+(—jbg)=1. The circuit is therefore matched at
B - B’', and at any point left of B— B’ as well.

If we use the Smith chart, we would rotate on a |F| -circle in a clockwise direction (towards
the generator) when transforming the normalised load admittance to the admittance y, .
However, according to (23), y, must also be located on the g =1 circle.

The use of the Smith chart for the purpose of designing a single-stub matching network is best
illustrated by means of an example.

Example 5: A 50 Q transmission line is connected to a load impedance Z, =35— j37.5Q.
Find the position and length of a short-circuited stub required to match the load at a frequency
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of 200 MHz. Assume that the transmission line is a co-axial line with a dielectric for which
g, =9.

Given Z, =R, =50Q and Z, =35~ j47.5Q. Therefore z;, =7, / Z; =0.7—- j0.95 .
e Enter the Smith chart at z, shown as point P, in Figure 13.

e Drawa ’F’ -circle centred at O with radius O—P1 .

e Draw a straight line from P, through O to point P, on the perimeter, intersecting the ’l"’ -
circle at P, , which represents y, . Note 0.109 at P, on the “wavelengths toward
generator” scale.

e Note the two points of intersection of the ’l" ’ -circle with the g =1 circle:

o At P;: Vo =1+ j1.2=1+ jb,
o AtP: Vg, =1=jl1.2=1+ jbg,

e Solutions for the position of the stub:

o For P, (from P/ to /)  d,=(0.168—-0.109)A =0.059A
o For P, (from P/ to /) d,=(0.332-0.109)A =0.223X1

e Solutions for the length of the short-circuited stub to provide y, =—jb,:

o For P, (from P, on the extreme right of the admittance chart to P, which
represents y, =—jbg =—jl1.2): [, =(0.361-0.250)A =0.111A

o For P, (from P, on the extreme right of the admittance chart to P,’, which
represents y, =—jby, = j1.2): /, =(0.139+0.250)A = 0.3891

To compute the physical lengths of the transmission line sections, we need to calculate the
wavelength on the transmission line. Therefore

xzu—”zl/\/@:—”}/; ~05m.

f f
Thus:
d, =0.059% =29.5 mm /,=0.111A =55.5mm
d, =02231=111.5mm 1, =0.389A =194.5 mm

Note that either of these two sets of solutions would match the load. In fact, there is a whole
range of possible solutions. For example, when calculating d,, instead of going straight from

P/ to B/, we could have started at P, rotated clockwise around the Smith chart # times
(representing an additional length of »nA/2 ) and continued on to A , yielding
d, =0.0591+n)\/2, n=0,1,2,... The same argument applies for d,, /, and /,.
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Figure 13: Single-stub matching on an admittance chart (Example 5).
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